Answer:
1. v = 30 m/s
2. v = 5 m/s
3. f = 40 Hz
4. f = 400 Hz
5. f = 300 Hz
6. λ = 0.772 m
7. λ = 0.386 m
8. λ = 0.625 m
9. v = 100 m/s
10. v = 50 m/s
Explanation:
The relationship between frequency, wavelength, and speed of a wave is given by the following formula:

where,
v = speed of wave
f = frequency of wave
λ = wavelength
1.
f = 100 Hz
λ = 0.3 m
Therefore,
v = (100 Hz)(0.3 m)
<u>v = 30 m/s</u>
<u></u>
2.
f = 50 Hz
λ = 0.1 m
v = (50 Hz)(0.1 m)
<u>v = 5 m/s</u>
<u></u>
3.
v = 20 m/s
λ = 0.5 m

<u>f = 40 Hz</u>
<u></u>
4.
v = 80 m/s
λ = 0.2 m

<u>f = 400 Hz</u>
<u></u>
5.
v = 120 m/s
λ = 0.4 m

<u>f = 300 Hz</u>
<u></u>
6.
v = 340 m/s
f = 440 Hz

<u>λ = 0.772 m</u>
<u></u>
7.
v = 340 m/s
f = 880 Hz

<u>λ = 0.386 m</u>
<u></u>
<u></u>
8.
v = 250 m/s
f = 400 Hz

<u>λ = 0.625 m</u>
<u></u>
9.
f = 50 Hz
λ = 2 m
v = (50 Hz)(2 m)
<u>v = 100 m/s</u>
<u></u>
10.
f = 100 Hz
λ = 0.5 m
v = (100 Hz)(0.5 m)
<u>v = 50 m/s</u>
Objects in space follow the laws or rules of physics, just like objects on Earth do. Things in space have inertia. That is, they travel in a straight line unless there is a force that makes them stop or change. The movement of things in space is influenced by gravity.
To solve the problem it is necessary to have the concepts of the magnetic field in a toroid.
A magnetic field is a vector field that describes the magnetic influence of electric charges in relative motion and magnetized materials.
By definition the magnetic field is given by the equation,

Where,
= Permeability constant
N = Number of loops
I = Current
r = Radius
According to the given data we have that the length is 120mm and the thickness of the copper wire is 4.82mm.
In this way the number of turns N would be


On the other hand to find the internal radius, we know that:



Therefore the total diameter of the soda would be

Applying the concept related to magnetic field you have to for the internal part:



The smallest magnetic field would be on the outside given by,



<em>Therefore the maximum magnetic field is 0.06T.</em>
A. Movement of tectonic plates... When these plates move they create an earthquake
solution:
1.6 m/s = 96 m/min (in other words, 1.6 m/s x 60 s/min)
96 m/min x 8.3 min = 796.8 m
