Answer:
speed of golf ball is 1.15 ×
m/s
and % of uncertainty in speed = 2.07 ×
%
Explanation:
given data
mass = 45.9 gram = 0.0459 kg
speed = 200 km/hr = 55.5 m/s
uncertainty position Δx = 1 mm =
m
to find out
speed of the golf ball and % of speed of the golf ball
solution
we will apply here heisenberg uncertainty principle that is
uncertainty position ×uncertainty momentum ≥
......1
Δx × ΔPx ≥
here uncertainty momentum ΔPx = mΔVx
and uncertainty velocity = ΔVx
and h = 6.626 ×
Js
so put here all these value in equation 1
× 0.0459 × ΔVx = 
ΔVx = 1.15 ×
m/s
and
so % of uncertainty in speed = ΔV / m
% of uncertainty in speed = 1.15 ×
/ 55.5
% of uncertainty in speed = 2.07 ×
%
Compare the initial mass to the final mass.
Answer:

Explanation:
A force exerts work when there is a displacement of its point of application in the direction of that force. Therefore, the work done by a system is defined as the inner product between the applied force and the displacement:

In this case, we have:

So, replacing this:

The correct option is: (A) <span>The energy before is equal to the energy afterward.
Explanation:
According to the law of conservation of Energy, energy can neither be created nor destroyed; it can only be transformed into one form or another. It means that the total initial energy must be equal to the total final energy of the system. By considering this law, we can infer that the energy before is equal to the energy afterward.</span>