1. Law of conservation of energy states that energy cannot be created, nor destroyed, for example, windmills take kinetic energy(movement energy) and convert it into electrical energy using gears and a generator as well as the blades.
so this supports it because the pendulum never reaches the same height twice unless you reset it so the energy is always getting less and less and not randomly getting back onto the pendulum.
2.Gravity, friction and air resistance slow it down as well
3. at the top, potential energy is the amount of energy something has relative to the amount it can disperse before stopping, for example, a book on a shelf has more potential energy than that of a book on a table, this is because when the shelf book falls it will create more energy than the table book.
Answer:
i = 61 degree
Explanation:
Given,

Now, by the snell's law

Now,
Sin i / sin r = n 2 / n 1
sin i / sin r (45 - 24.09) = 2.45 / 1
i = 60.97 degree
Answer:
The change in the charge on the positve plate when the Teflon is inserted is +2.5 nC.
Explanation:
- It can be showed that the capacitance of a parallel-plate capacitor, can be expresssed as follows:

- Where ε, is the dielectric constant of the material that fills the space between plates.
- When this space is filled with air, ε= ε₀ = 8,85*10⁻¹² F/m.
- At the same time, the capacitance of a capacitor, by definition, is as follows:

- If we insert a Teflon slab, in such a way that fills completely the gap between the plates, all other parameters being equal, if ε = 2*ε₀, this means that C₂ = 2* C₁. = 50 pF
- As V₂=V₁ (due to the capacitor remains connected to the same battery) the charge must be the double, so Q₂ = 2* Q₁ = 5 nC.
- So, the change in the charge of the positive plate is +2.5 nC.
Answer:
1.92 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 200 Kg
Spring constant (K) = 10⁶ N/m
Workdone =?
Next, we shall determine the force exerted on the spring. This can be obtained as follow:
Mass (m) = 200 Kg
Acceleration due to gravity (g) = 9.8 m/s²
Force (F) =?
F = m × g
F = 200 × 9.8
F = 1960 N
Next we shall determine the extent to which the spring stretches. This can be obtained as follow:
Spring constant (K) = 10⁶ N/m
Force (F) = 1960 N
Extention (e) =?
F = Ke
1960 = 10⁶ × e
Divide both side by 10⁶
e = 1960 / 10⁶
e = 0.00196 m
Finally, we shall determine energy (Workdone) on the spring as follow:
Spring constant (K) = 10⁶ N/m
Extention (e) = 0.00196 m
Energy (E) =?
E = ½Ke²
E = ½ × 10⁶ × (0.00196)²
E = 1.92 J
Therefore, the Workdone on the spring is 1.92 J
It is fairly easy to build an electromagnet. All you need to do is wrap some insulated copper wire around an iron core. If you attach a battery to the wire, an electric current will begin to flow and the iron core will become magnetized. When the battery is disconnected, the iron core will lose its magnetism. Follow these steps.
Step 1 - Gather the Materials
One iron nail fifteen centimeters (6 in) long
Three meters (10 ft) of 22 gauge insulated, stranded copper wire
One or more D-cell batteries
Step 2 - Remove some Insulation
Step 3 - Wrap the Wire Around the Nail
Step 4 - Connect the Battery