Mineral because its not a rock
The answer is: 27 grams of aluminium.
Balanced chemical reaction: 2Al + 3H₂SO₄ → Al₂(SO₄)₃ + 3H₂.
n(H₂) = 1.5 mol; amount of hydrogen.
Form chemical reaction: n(Al) : n(H₂) = 2 : 3.
n(Al) = 2 · 1.5 mol ÷ 3.
n(Al) = 1.0 mol; amount of aluminium.
m(Al) = n(Al) · M(Al).
m(Al) = 1 mol · 27 g/mol.
m(Al) = 27 g; mass of aluminium.
Answer:
Molecular formula for the gas is: C₄H₁₀
Explanation:
Let's propose the Ideal Gases Law to determine the moles of gas, that contains 0.087 g
At STP → 1 atm and 273.15K
1 atm . 0.0336 L = n . 0.082 . 273.15 K
n = (1 atm . 0.0336 L) / (0.082 . 273.15 K)
n = 1.500 × 10⁻³ moles
Molar mass of gas = 0.087 g / 1.500 × 10⁻³ moles = 58 g/m
Now we propose rules of three:
If 0.580 g of gas has ____ 0.480 g of C _____ 0.100 g of C
58 g of gas (1mol) would have:
(58 g . 0.480) / 0.580 = 48 g of C
(58 g . 0.100) / 0.580 = 10 g of H
48 g of C / 12 g/mol = 4 mol
10 g of H / 1g/mol = 10 moles
1. Intensive.
2. Physical.
Hope this helps. :)