Answer:
I'm not 100% sure tbh but the only thing I think makes sense to represent vibration would be frequency which is measure in Hertz (Hz)
Explanation:
The formula for this problem that we will be using is:
F * cos α = m * g * μs where:F = 800m = 87g = 9.8
cos α = m*g*μs/F= 87*9.8*0.55/800= 0.59 So solving the alpha, find the arccos above.
α = arccos 0.59 = 54 ° is the largest value of alpha
Answer:
150 inches (12.5 ft)
Explanation:
The work done to lift the 500 pound block 3 inches should be the same as that to lift the 10 pond object a given distance.
The following is the equation one needs to solve:

therefore solving for the distance "x" gives as the answer (in inches):

which can also be given in feet as: 12.5 ft
Answer:
Probability of tunneling is 
Solution:
As per the question:
Velocity of the tennis ball, v = 120 mph = 54 m/s
Mass of the tennis ball, m = 100 g = 0.1 kg
Thickness of the tennis ball, t = 2.0 mm = 
Max velocity of the tennis ball,
= 89 m/s
Now,
The maximum kinetic energy of the tennis ball is given by:

Kinetic energy of the tennis ball, KE' = 
Now, the distance the ball can penetrate to is given by:


Thus



Now,
We can calculate the tunneling probability as:



Taking log on both the sides:


Answer:
160 kg
12 m/s
Explanation:
= Mass of first car = 120 kg
= Mass of second car
= Initial Velocity of first car = 14 m/s
= Initial Velocity of second car = 0 m/s
= Final Velocity of first car = -2 m/s
= Final Velocity of second car
For perfectly elastic collision

Applying in the next equation


Mass of second car = 160 kg
Velocity of second car = 12 m/s