Answer:
Explanation:
Pressure is equal to the force divided by the area on which it acts. Since the smaller piston has less area so from less force also we can get more efficiency in work. And according to the Pascal's principle, in a hydraulic system, pressure exerted on a piston produces an equal increase in pressure on another piston in the system. Thus by applying little force in the smaller piston, we can get same force from larger piston too. A hydraulic machine magnifies force.
An Olympic high diver has gravitational potential energy because of her height. As she dives, kinetic energy becomes of her energy just before she hits the water.
Gravitational potential energy is the energy possessed or acquired by an object due to a change in its position when it is present in a gravitational field. In simple terms, it can be said that gravitational potential energy is an energy that is related to gravitational force or to gravity.
Kinetic energy is the energy of motion, observable as the movement of an object, particle, or set of particles.
When the high diver is standing stable and not moving , that diver has a gravitational potential energy because of the height . The moment she dives , before hitting the water , from being stationary she gained some momentum and come in motion , due to motion her gravitational potential energy will change to kinetic energy before hitting the ground.
To learn more about Gravitational potential energy here
brainly.com/question/15978356
#SPJ4
Mechanical wave shows dual nature
1) B. Energy is the ability to do work
2) C. Energy is conserved, it just goes from one form to another.
3) Work = Force x displacement
= 300 x 100 = 30,000 Joules
4) leaning a brick because no displacement is taking place.
5) They change the amount/strength or direction of the force needed.
6) Less force is needed and applied over a longer distance.
7) Heat is the flow of thermal energy from one object to another.
The force exerted by a magnetic field on a wire carrying current is:

where I is the current, L the length of the wire, B the magnetic field intensity, and

the angle between the wire and the direction of B.
In our problem, the force is F=0.20 N. The current is I=1.40 A, while the length of the wire is L=35.0 cm=0.35 m. The angle between the wire and the magnetic field is

, so we can re-arrange the formula and substitute the numbers to find B: