Answer:
Explanation:
initial height, yo = 2 m
initial velocity, u = 20 m/s
angle of projection,θ = 5 degree
distance of net = 7 m
height of net = 1 m
Let it covers a vertical distance y in time t .
Use Second equation of motion for vertical motion


As it hits the ground in time t, so put y = 0



Taking positive sign, t = 0.84 s
The ball travels a horizontal distance x in time t
X = 20 Cos5 x t
X = 16.76 m
As this distance is more than the distance of net, so it clears the net.
Let t' be the time taken to travel a horizontal distance equal to the distance of net
7 = 20 cos5 x t'
t' = 0.35 s
Let the vertical distance traveled by the ball in time t' is y'.
So,


y' = 2.008 m
So, it clears the net which is 1 m high.
It clears the net by a vertical distance of 2.008 - 1 = 1.008 m and horizontal distance 16.76 - 7 = 9.76 m
Answer: I think Its the Height is 11.76 Meters (38.582677 Feet) between the bridge and the ground
Explanation: Supposing that where not counting air resistance in the equation, the equation
states that 1/2 multiplied by earths gravitational acceleration multiplied by the amount of time to reach the bottom: 2.4 seconds equals 11.76 meters of height between the bridge and the ground.
Answer:
In the clarification portion elsewhere here, the definition of the concern is mentioned.
Explanation:
So like optical telescopes capture light waves, introduce it to concentrate, enhance it, as well as make it usable through different instruments via study, so radio telescopes accumulate weak signal light waves, introduce that one to focus, enhance it, as well as make this information available during research. To research naturally produced radio illumination from stars, galaxies, dark matter, as well as other natural phenomena, we utilize telescopes.
Optical telescopes detect space-borne visible light. There are some drawbacks of optical telescopes mostly on the surface:
- Mostly at night would they have been seen.
- Unless the weather gets cloudy, bad, or gloomy, they shouldn't be seen.
Although radio telescopes monitor space-coming radio waves. Those other telescopes, when they are already typically very massive as well as costly, have such an improvement surrounded by optical telescopes. They should be included in poor weather and, when they travel through the surrounding air, the radio waves aren't obscured by clouds. Throughout the afternoon and also some at night, radio telescopes are sometimes used.
When using chlorine bleach, the proper amount for one gallon of water is 8 ounces, or one cup. Now, since there's 4 quarts in a gallon,divide the 8 ounces by 4. You get 2. So you should put 2 ounces (or 1/4 cup) of chlorine bleach in a quart of water. Hope this helps!
2.71 m/s fast Hans is moving after the collision.
<u>Explanation</u>:
Given that,
Mass of Jeremy is 120 kg (
)
Speed of Jeremy is 3 m/s (
)
Speed of Jeremy after collision is (
) -2.5 m/s
Mass of Hans is 140 kg (
)
Speed of Hans is -2 m/s (
)
Speed of Hans after collision is (
)
Linear momentum is defined as “mass time’s speed of the vehicle”. Linear momentum before the collision of Jeremy and Hans is
= 
Substitute the given values,
= 120 × 3 + 140 × (-2)
= 360 + (-280)
= 80 kg m/s
Linear momentum after the collision of Jeremy and Hans is
= 
= 120 × (-2.5) + 140 × 
= -300 + 140 × 
We know that conservation of liner momentum,
Linear momentum before the collision = Linear momentum after the collision
80 = -300 + 140 × 
80 + 300 = 140 × 
380 = 140 × 
380/140= 
= 2.71 m/s
2.71 m/s fast Hans is moving after the collision.