Answer: The most likely partial pressures are 98.7MPa for NO₂ and 101.3MPa for N₂O₄
Explanation: To determine the partial pressures of each gas after the increase of pressure, it can be used the equilibrium constant Kp.
For the reaction 2NO₂ ⇄ N₂O₄, the equilibrium constant is:
Kp = 
where:
P(N₂O₄) and P(NO₂) are the partial pressure of each gas.
Calculating constant:
Kp = 
Kp = 0.0104
After the weights, the total pressure increase to 200 MPa. However, at equilibrium, the constant is the same.
P(N₂O₄) + P(NO₂) = 200
P(N₂O₄) = 200 - P(NO₂)
Kp = 
0.0104 = ![\frac{200 - P(NO_{2}) }{[P(NO_{2} )]^{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B200%20-%20P%28NO_%7B2%7D%29%20%20%7D%7B%5BP%28NO_%7B2%7D%20%29%5D%5E%7B2%7D%7D)
0.0104
+
- 200 = 0
Resolving the second degree equation:
=
= 98.7
Find partial pressure of N₂O₄:
P(N₂O₄) = 200 - P(NO₂)
P(N₂O₄) = 200 - 98.7
P(N₂O₄) = 101.3
The partial pressures are
= 98.7 MPa and P(N₂O₄) = 101.3 MPa
Only one of the listed choices are correct here:
<span><em>The x-axis would change title and values.</em>
</span>
The way to working out the numbers is to increase the measure of HNO3 required by the molarity to discover what number of moles you require: 0.115. You ought to have the capacity to make sense of the recipe weight H is 1, N is 14, O is 16. The result of the quantity of moles duplicated by the recipe weight ought to give an esteem in grams. You can utilize the thickness to change over to a volume of HNO3 to add to the right volume of water.