Answer:
2.7 × 10⁻⁴ bar
Explanation:
Let's consider the following reaction at equilibrium.
SbCl₅(g) ⇄ SbCl₃(g) + Cl₂(g)
The pressure equilibrium constant (Kp) is 3.5 × 10⁻⁴. We can use these data and the partial pressures at equilibrium of SbCl₅ and SbCl₃, to find the partial pressure at equilibrium of Cl₂.
Kp = pSbCl₃ × pCl₂ / pSbCl₅
pCl₂ = Kp × pSbCl₅ / pSbCl₃
pCl₂ = 3.5 × 10⁻⁴ × 0.17 / 0.22
pCl₂ = 2.7 × 10⁻⁴ bar
117 L. You can start by making a table to organize the information you are given. Then, you can use the formula PV/T=PV/T and plug in the numbers you have. You then solve for the missing volume. Remember that the initial pressure, temperature, and volume should be on one side of the equal sign, and the final pressure, volume, and temperature should be on the other side.
Answer:
a
Explanation:
im thinking because the water is a room temperature there shouldnt be anm immence amount og heat energy for it to have a good amount of energy tho i could be wrong because its not moving it could have no energy.
Objects would be like a lap, stove, & microwave. There’s many options.
A cation (+) will be smaller than its neutral atom, while anion (-) will be larger than its neutral atom.