Answer:
Autotrophs
Explanation:
When you go down a food chain continuing to ask "what does it eat?" the last living thing that you will land upon is an autotroph.
Autotrophs are the primary producers as they (photoautotrophs) use the energy either from the sun to prepare there food by the process of photosynthesis or, more rarely, obtain chemical energy through oxidation (chemoautotrophs) to make organic substances from inorganic ones.
Autotrophs get consumed by the primary consumers in the food chain.
It might make more sense putting it another way but this is basically it. you just take the minutes and divide them by 60 to convert them to hours. then simplify the ratio
Answer:
I'm going to say b. gasoline is a chemical and when it combusts, it causes heat (thermal energy) and when the piston rotates because of the thermal expansion, you get mechanical force.
The velocity vector of the planet points toward the center of the circle is the following is true about a planet orbiting a star in uniform circular motion.
A. The velocity vector of the planet points toward the center of the circle.
<u>Explanation:</u>
Motion of the planet around the star is mentioned to be uniform and around a circular path. Objects in uniform circular motion motion has constant angular speed but the velocity of the object will not remain constant. Since the planet is in circular motion the direction of velocity vector at a particular point is tangential to the circular path at that particular point.
Thus at every point, the direction of velocity vector changes and this means the velocity is never constant. The objects in uniform circular motion has centripetal acceleration which means that velocity vector of the planet points toward the center of the circle.
Answer with Explanation:
We are given that
Initial velocity,u=4.5 m/s
Time=t =0.5 s
Final velocity=v=0m/s
We have to find the deceleration and estimate the force exerted by wall on you.
We know that
Acceleration=
Using the formula
Acceleration=
deceleration=a=
We know that
Force =ma
Using the formula and suppose mass of my body=m=40 kg
The force exerted by wall on you
Force=