Answer:112.82 m/s
Explanation:
Given
range of arrow=68 m

as the arrow travels it acquire a vertical velocity 

-------1
Range is given by
R=ut
where u=initial velocity


substitute the value of t in eqn 1

--------2
and 

substitute it in 2


u=112.82 m/s
Answer:
50N
Explanation:
Force (N) = mass (kg) × acceleration (m/s²)
0.25kg times 200m/s² = 50N
Answer:
The shortest braking distance is 35.8 m
Explanation:
To solve this problem we must use Newton's second law applied to the boxes, on the vertical axis we have the norm up and the weight vertically down
On the horizontal axis we fear the force of friction (fr) that opposes the movement and acceleration of the train, write the equation for each axis
Y axis
N- W = 0
N = W = mg
X axis
-Fr = m a
-μ N = m a
-μ mg = ma
a = μ g
a = - 0.32 9.8
a = - 3.14 m/s²
We calculate the distance using the kinematics equations
Vf² = Vo² + 2 a x
x = (Vf² - Vo²) / 2 a
When the train stops the speed is zero (Vf = 0)
Vo = 54 km/h (1000m/1km) (1 h/3600s)= 15 m/s
x = ( 0 - 15²) / 2 (-3.14)
x= 35.8 m
The shortest braking distance is 35.8 m
Answer:
B. QC > 0; QH < 0
Explanation:
Given that there are two reservoir of energy.
Sign convention for heat and work :
1.If the heat is adding to the system then it is taken as positive and if heat is going out from the system then it is taken as negative.
2. If the work is done on the system then it is taken as negative and if the work is done by the system then it is taken as positive.
From hot reservoir heat is going out that is why it is taken as negative

From cold reservoir heat is coming inside the reservoir that is why it is taken as positive

That is why the answer will be
,