Answer:
2.1 m/s
Explanation:
Momentum is conserved, so:
m₁ u₁ + m₂ u₂ = (m₁ + m₂) v
(9.1 kg) (6.6 m/s) = (9.1 kg + 19.3 kg) v
v = 2.1 m/s
Answer:
Surface tension is, the surface where the water meets the air, water molecules cling even more tightly to each other.
you would have C) two north poles and two south poles
Answer: R = 346.4N and angle 30° to the horizontal negative axis
Explanation:
To find the resultant force, we need to sum up the forces on the vertical and horizontal axis.
For the horizontal axis;
Rx = -b + acos60
Rx = -400N +200cos60
Rx = -400N +100N
Rx = -300N
For the vertical axis;
Ry = asin60 = 200sin60
Ry = 173.2N
The resultant force R can be given as;
R = √(Rx^2 +Ry^2)
R = √((-300)^2 + 173.2^2)
R = 346.4N
Angle z can be written as
Tanz = Ry/Rx
z = taninverse (Ry/Rx)
z = taninverse (173.2/300)
z = 30°
Answer: rp/re= me/mp= 544 * 10^-6.
Explanation: To calculate this problem we have to consider the circular movement by the electron and proton inside a magnetic field.
Then the dynamic equation for the circular movement is given by:
Fcentripetal= m*ω^2.r
q*v*B=m*ω^2.r
we write this for each particle then we have the following:
q*v*B=me* ω^2*re
q*v*B=mp* ω^2*rp
rp/re=me/mp=9.1*10^-31/1.67*10^-27=544*10^-6