The cost of boiling 500 cm³ of water using the 3 KW Kettle is 1.35p
<h3>What is power? </h3>
This is defined as the rate in which energy is consumed. Electrical power is expressed mathematically as:
Power (P) = Energy (E) / time (t)
P = E / t
<h3>How to determine the energy</h3>
- Power (P) = 3 KW
- Time (t) = 3 mins = 3 / 60 = 0.05 h
- Energy (E) =?
E = Pt
E = 3 × 0.05
E = 0.15 KWh
<h3>How to determine the cost</h3>
- Energy (E) = 0.15 KWh
- Cost per unit = 9p
- Cost =?
Cost = Energy × cost per unit
Cost = 0.15 × 9
Cost = 1.35p
Learn more about electrical power:
brainly.com/question/64224
#SPJ1
Answer: The decibel scale is a logarithmic scale where each bel or 10 decibels correspondents to a factor of ten. A power intensity of 10^(-12) watts per square meter is the standard reference for a SPL of 0 db. So an SPL of 98 db corresponds to a power intensity of 10^(9.8)*10^(-12) or 10^(9.8–12) w/m^2.
0.006309573 w/m^2.
You can also readily find the value for any given SPL using the online calculator at: http://www.sengpielaudio.com/calculator-soundlevel.htm
Explanation:
Heat of combustion.<span> The calorific value is the total energy released as heat when a substance undergoes complete combustion with oxygen under standard conditions. The chemical reaction is typically a hydrocarbon or other organic molecule reacting with oxygen to form carbon dioxide and water and release heat.</span>
Explanation:
Given that,
Mass of a freight car, 
Speed of a freight car, 
Mass of a scrap metal, 
(a) Let us assume that the final velocity of the loaded freight car is V. The momentum of the system will remain conserved as follows :

So, the final velocity of the loaded freight car is 0.182 m/s.
(b) Lost on kinetic energy = final kinetic energy - initial kinetic energy
![\Delta K=\dfrac{1}{2}[(m_1+m_2)V^2-m_1u_1^2)]\\\\=\dfrac{1}{2}\times [(30,000+110,000 )0.182^2-30000(0.85)^2]\\\\=-8518.82\ J](https://tex.z-dn.net/?f=%5CDelta%20K%3D%5Cdfrac%7B1%7D%7B2%7D%5B%28m_1%2Bm_2%29V%5E2-m_1u_1%5E2%29%5D%5C%5C%5C%5C%3D%5Cdfrac%7B1%7D%7B2%7D%5Ctimes%20%5B%2830%2C000%2B110%2C000%20%290.182%5E2-30000%280.85%29%5E2%5D%5C%5C%5C%5C%3D-8518.82%5C%20J)
Lost in kinetic energy is 8518.82. Negative sign shows loss.
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds