Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have

now plug in all data into above equation



so correct answer is
A) - 1.8 m/s
Answer:
Angular velocity is same as frequency of oscillation in this case.
ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Explanation:
- write the equation F(r) = -K
with angular momentum <em>L</em>
- Get the necessary centripetal acceleration with radius r₀ and make r₀ the subject.
- Write the energy of the orbit in relative to r = 0, and solve for "E".
- Find the second derivative of effective potential to calculate the frequency of small radial oscillations. This is the effective spring constant.
- Solve for effective potential
- ω =
x ![[\frac{L^{2}}{mK}]^{3/14}](https://tex.z-dn.net/?f=%5B%5Cfrac%7BL%5E%7B2%7D%7D%7BmK%7D%5D%5E%7B3%2F14%7D)
Urbfhdhehjrrr
Rrrrdndndndjdjdjdjjdjdjdjdkdmdmdmdkdjdjdjdjdid
That is true. Some people with mental disorders envision the world differently. Some people think that people are out to get them, they are in another world, etc. They will do anything to feel safe in their mental state.
I hope this helps!
~cupcake
Answer:
The influence of diameter of the blood vessel on peripheral resistance is significant because resistance is inversely proportional to the fourth power of the diameter.
Explanation:
The influence of diameter of the blood vessel on peripheral resistance is significant because the relation between the peripheral resistance and the diameter is given as, resistance is inversely proportional to the fourth power of the diameter. Thus, with small increase or decrease in the value of diameter, the peripheral resistance may vary by a significant amount.