Answer:
5235.84 kg
Explanation:
There is one theorem - whose proof I will never remember without having to drag calculus in there - that says that the variation of momentum is equal to the force applied times the time the application last.
As long as the engine isn't ejecting mass - at this point it's a whole new can of worm - we know the force, we know the variation in speed, time to find the mass. But first, let's convert the variation of speed in meters per second. The ship gains 250 kmh,
;

Answer:
Fy=107.2 N
Explanation:
Conceptual analysis
For a right triangle :
sinβ = y/h formula (1)
cosβ = x/h formula (2)
x: side adjacent to the β angle
y: opposite side of the β angle
h: hypotenuse
Known data
h = T = 153.8 N : rope tension
β= 44.2°with the horizontal (x)
Problem development
We apply the formula (1) to calculate Ty : vertical component of the rope force.
sin44.2° = Ty/153.8 N
Ty = (153.8 N ) *(sen44.2°)= 107.2 N directed down
for equilibrium system
Fy= Ty=107.2 N
Fy=107.2 N upward component of the force acting on the stake
From among the choices provided, the more appropriate
answer is ' T ', the initial letter often used to represent
words that include 'true', 'truth', 'trust', etc., (as well as
'tree', 'train', 'transmit', 'Transylvania', 'trachea', 'travesty',
and 'trick', which are irrelevant to the present discussion).
This response is the most fitting and appropriate, because
the statement that precedes the list of allowable choices is
exemplary in its accuracy and veracity. An ion can, in fact,
have a positive or negative charge, although the same ion
cannot have both.
Hello
Here we must use the equation of motion
v^2 = u^2 + 2as; where v is final velocity, u is initial velocity, a is the acceleratoin and is the distance travelled.
We select this one because the time of collision is unknown to us.
We know the truck stopped so its final velocity is 0; thus v = 0.
Converting the initial velocity to SI units, we get 3.89 m/s.
The distance traveled, s, is 0.062 meters.
Inserting all of these values into the equation,
0 = (3.89)^2 + 2(a)(0.062)
and solving for a, we get a to be
-122.0 ms^(-2)
The negative sign indicates the acceleration is in the opposite direction to the initial motion, which means the truck decelerated. This is consistent with the given condition.
<h2>
The seagull's approximate height above the ground at the time the clam was dropped is 4 m</h2>
Explanation:
We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 9.81 m/s²
Time, t = 3 s
Substituting
s = ut + 0.5 at²
s = 0 x 3 + 0.5 x 9.81 x 3²
s = 44.145 m
The seagull's approximate height above the ground at the time the clam was dropped is 4 m