Answer:
The current would be same in both situation.
Explanation:
Given that,
Current I = 13 A
Number of turns = 23
We need to calculate the induced emf
Using formula of induced emf is

For N = 1

We need to calculate the current
Using formula of current

Put the value of emf

Now, if the number of turn is 22 , then induced emf would be

Then the current would be




Hence, The current would be same in both situation.
<h2>
Answer:</h2><h2>
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
</h2>
Explanation:
A meteoroid is in a circular orbit 600 km above the surface of a distant planet.
Mass of the planet = mass of earth = 5.972 x
Kg
Radius of the earth = 90% of earth radius = 90% 6370 = 5733 km
The acceleration of the meteoroid due to the gravitational force exerted by the planet = ?
By formula, g = 
where g is the acceleration due to the gravity
G is the universal gravitational constant = 6.67 x

M is the mass of the planet
r is the radius of the planet
Substituting the values, we get
g = 
g = 12.12 m/
The acceleration of the meteoroid due to the gravitational force exerted by the planet = 12.12 m/
I'm sure you've noticed that an airplane high in the sky, far away
from you, looks like it's moving very slowly. At the same time,
somebody passing you on a skateboard whizzes past you at
high speed. The farther away something is from you, the slower
it appears to move.
The nearest star outside the solar system is almost 32 thousand times
as far away from us as the farthest visible planet (Saturn) is, and all of the
other stars are farther than that.
That's why you have to wait a few thousand years before you notice
that the shape of a constellation has changed.
To put it a slightly different way . . . Everything is in motion. The motion is
more noticeable for nearby things, and less noticeable for farther-away things.
Objects within our solar system are the only ones near enough so that a human
lifetime is a long enough period in which to notice the change in their position.
Even Pluto moves less then 1.5° against the 'background' stars in a whole year.
This all makes me feel small. How about you ?
Answer:
Approximately
.
Assumption: the ball dropped with no initial velocity, and that the air resistance on this ball is negligible.
Explanation:
Assume the air resistance on the ball is negligible. Because of gravity, the ball should accelerate downwards at a constant
near the surface of the earth.
For an object that is accelerating constantly,
,
where
is the initial velocity of the object,
is the final velocity of the object.
is its acceleration, and
is its displacement.
In this case,
is the same as the change in the ball's height:
. By assumption, this ball was dropped with no initial velocity. As a result,
. Since the ball is accelerating due to gravity,
.
.
In this case,
would be the velocity of the ball just before it hits the ground. Solve for
.
.
The ammonium salt of acetic acid is the reaction product of acetic acid and ethylamine at room temperature
<h3 /><h3>What is acetic acid ?</h3>
Acetic acid is a monofunctional carboxylic acid containing two carbon atoms. It acts as a protein solvent, food acidity regulator, antibacterial food preservative. It is a conjugate acid of an acetate.
Acetic acid is used in the production of acetic anhydride, cellulose acetate, vinyl acetate monomer, acetic ester, chloroacetic acid, plastics, dyes, insecticides, photographic chemicals, and rubber. Other commercial uses include the production of vitamins, antibiotics, hormones, organic chemicals, and as a food additive. Typical concentrations of acetic acid found naturally in foods are 700 to 1200 milligrams/kg (mg/kg) in wine, up to 860 mg/kg in aged cheeses, and 2.8 mg/kg in aged cheeses. fresh orange juice.
learn more about acetic acid, visit;
brainly.com/question/16970860
#SPJ4