Answer:
Option C
Explanation:
According to the formula
So
If we use wide wire we increase the area of cross section so resistance decreases
The options of the given are:
A. A large diameter myelinated fiber
B. A small diameter myelinated fiber
C. A large unmyelinated fiber
D. A small unmyelinated fiber
E. A small fiber with multiple Schwann cells
Answer: Option A, A large diameter myelinated fiber.
Explanation:
The conduction of the nerve impulse would be greatest in the myelinated fiber because the main function of the myelin sheath is to increase the speed of the impulse at which the electrical signals propagate.
In case of the unmyelinated sheath the nerve impulse travels slowly as the conduction waves but in case of the large diameter myelinated sheath the signals travel via saltatory conduction( hop)
In this type of propagation the signals are transferred from the node of Ranvier in one neuron to next node which increases the overall velocity of the action potentials.
Answer:
About 7.67 m/s.
Explanation:
Mechanical energy is always conserved. Hence:

Where <em>U</em> is potential energy and <em>K</em> is kinetic energy.
Let the bottom of the slide be where potential energy equals zero. As a result, the final potential energy is zero. Additionally, because the child starts from rest, the initial kinetic energy is zero. Thus:

Substitute and solve for final velocity:

In conclusion, the child's speed at the bottom of the slide is about 7.67 m/s.