Answer:
a) 145.6kgm^2
b) 158.4kg-m^2/s
c) 0.76rads/s
Explanation:
Complete qestion: a) the rotational inertia of the merry-go-round about its axis of rotation
(b) the magnitude of the angular momentum of the child, while running, about the axis of rotation of the merry-go-round and
(c) the angular speed of the merry-go-round and child after the child has jumped on.
a) From I = MK^2
I = (160Kg)(0.91m)^2
I = 145.6kgm^2
b) The magnitude of the angular momentum is given by:
L= r × p The raduis and momentum are perpendicular.
L = r × mc
L = (1.20m)(44.0kg)(3.0m/s)
L = 158.4kg-m^2/s
c) The total moment of inertia comprises of the merry- go - round and the child. the angular speed is given by:
L = Iw
158.4kgm^2/s = [145kgm^2 + ( 44.0kg)(1.20)^2]
w = 158.6/208.96
w = 0.76rad/s
As the water russhes toward the shore, it rises because it is pushing against it.<span />
Answer:
Subduction, Trench, Mantle
Explanation:
Answer:
29.4855 grams of chlorophyll
Explanation:
From Raoult's law
Mole fraction of solvent = vapor pressure of solution ÷ vapor pressure of solvent = 457.45 mmHg ÷ 463.57 mmHg = 0.987
Mass of solvent (diethyl ether) = 187.4 g
MW of diethyl ether (C2H5OC2H5) = 74 g/mol
Number of moles of solvent = mass/MW = 187.4/74 = 2.532 mol
Let the moles of solute (chlorophyll) be y
Total moles of solution = moles of solute + moles of solvent = (y + 2.532) mol
Mole fraction of solvent = moles of solvent/total moles of solution
0.987 = 2.532/(y + 2.532)
y + 2.532 = 2.532/0.987
y + 2.532 = 2.565
y = 2.565 - 2.532 = 0.033
Moles of solute (chlorophyll) = 0.033 mol
Mass of chlorophyll = moles of chlorophyll × MW = 0.033 × 893.5 = 29.4855 grams