Answer:
Kinetic energy of diver at 90% of the distance to the water is 9000 J
Explanation:
Let d is the distance between the position of the diver and surface of the pool.
Initially, the diver is at rest and only have potential energy which is equal to 10000 J.
As the diver dives towards the pool, its potential energy is converting into kinetic energy due to law of conservation of energy, as total energy of the system remains same.
Energy before diving = Energy during diving
(Potential Energy + Kinetic Energy) = (Kinetic Energy + Potential Energy)
When the diver reaches 90% of the distance to the water, its kinetic energy
is 90% to its initial potential energy, as its initial kinetic is zero,i.e.,
K.E. = 
K.E. = 9000 J
Answer: im not sire
Explanation: very sorry im not sure
Answer:
Current- the flow of free charges, such as electrons and ions
Drift velocity- the average speed at which these charges move
Answer:
(a) - 42700 m/s
(b) - 6.8 x 10^-4 m/s^2
Explanation:
initial velocity of star, u = 20.7 km/s
Final velocity of star, v = - 22 km/s
time, t = 1.99 years
Convert velocities into m/s and time into second
So, u = 20700 m / s
v = - 22000 m/s
t = 1.99 x 365.25 x 24 x 3600 = 62799624 second
(a) Change in planet's velocity = final velocity - initial velocity
= - 22000 - 20700 = - 42700 m/s
(b) Accelerate is defined as the rate of change of velocity.
Acceleration = change in velocity / time
= ( - 42700 ) / (62799624) = - 6.8 x 10^-4 m/s^2