ΒγΕ the answer should be a hot day
Answer:
<h2>
16,931 turns</h2>
Explanation:
The magnetic field produced is expressed using the formula

B is the magnetic field = 0.30T
I is the current produced in the coil = 4.5A
is the magnetic permittivity in vacuum = 1.26*10^-6Tm/A
L is the length of the solenoid = 32 cm = 0.32 m
N is the number of turns in the solenoid.
Making N the subject of the formula from the equation above;


Substituting the give values to get N;

The number of turns the solenoid must have is approximately 16,931 turns
Answer:
Lone pairs cause bond angles to deviate away from the ideal bond angles
Explanation:
Bonded electrons are stabilized and clustered between the bonding electrons meaning they are much closer together. Non-bonding electrons however are not being shared between any atoms which allows them to roam a little further spreading the charge density over a larger space and therefore interfering with what would be an expected bond angle
Answer:
a) 39.6 m/s b) 4123 N
Explanation:
a) At the top of the loop, all of the forces point downwards (force of gravity and normal force).
Fnet=ma
ma=m(v^2/R) (centripetal acceleration)
mg=m(v^2/R)
m cancels out (this is why pilot feels weightless) so,
g=(v^2/R)
9.8 m/s^2 = v^2/160 m
v^2=1568 m^2/s^2
v=39.6 m/s
b) At the bottom of the loop, the normal force and the force of gravity point in opposite directions. The normal force is the weight felt.
Convert 300 km/hr to m/s
300 km/hr=83.3 m/s
Convert pilot's weight into mass:
760 N = 77.55 kg
Fnet=ma
n-mg=m(v^2/R)
n=(77.55 kg)(((83.3 m/s)^2)/160 m)+(77.55 kg)(9.8 m/s^2)
n=3363.2 N+760 N=4123 N