Answer:
45000 K .
Explanation:
Given :
A liter of a gas weigh 2 gram at 300 kelvin temperature and 1 atm pressure
We need to find the temperature in which 1 litre of the same gas weigh 1 gram
in pressure 75 atm.
We know, by ideal gas equation :

Here , n is no of moles , 
Putting initial and final values and dividing them :


Hence , this is the required solution.
Answer:
Speed of 0.08 kg mass when it will reach to the bottom position is 1.94 m/s
Explanation:
When rod is released from rest then due to unbalanced torque about the hinge the system will rotate
Now moment of inertia of the system is given as

now we have



now we have

so we have


now by energy conservation we can say work done by gravity must be equal to change in kinetic energy
so we have



Now speed of 0.08 kg mass when it reaches to bottom point is given as



A object that circles around a planet is called a satellite.<span />
Answer:
$84
Explanation:
The coefficient of performance (COP) show the relationship between the power (kW) output of the heat pump and the power (kW) input to the compressor.
The heater consumed by the heater is 1200 kWh.
For a heat pump with a COP of 2.4, the electric input needed to produce an output of 1200 kWh is:
Electric input to heat pump = 1200 / 2.4 = 500 kWh
That means that supplying a heat pump with 500 kWh produces an output of 1200 kWh
The amount of power saved = power consumed by heater - power consumed by heat pump = 1200 - 500 = 700 kWh
Money saved = $0.12/kWh * 700 kWh = $84