Answer:
The answer is below
Explanation:
Momentum is used to measure the quantity of motion in an object. Momentum is the product of mass and velocity.
Momentum = mass * velocity
The principle of conservation of momentum states that momentum cannot be created or destroyed but can be transferred. Therefore the momentum before and after an action is equal.
Initial momentum = Final momentum
Let m be the mass of the diver, M be the mass of the raft, u be the initial velocity of the diver, U be the initial velocity of the raft, v be the final velocity of the diver and V be the final velocity of the raft.
m = 71 kg, M = 500 kg, v = 6 m/s
Initial both the raft and diver are at rest, hence u and U is zero, hence:
mu + MU = mv + MV
71(0) + 500(0) = 71(6) + 500(V)
0 = 426 + 500(V)
500(V) = -426
V = -426/500
V = -0.852 m/s
Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:

<em>where
: is the photon energy,
: are the rest energies of the proton and the antiproton, respectively, equals to m₀c²,
: are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.</em>
Therefore the kinetic energy of the antiproton is:
<u>The proton mass is equal to the antiproton mass, so</u>:

Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!
Answer: R=24.2Ω
Explanation: <u>Power</u> is rate of work being done in an electric circuit. It relates to voltage, current and resistance through the following formulas:
P=V.i
P=R.i²

The resistance of the system is:



R = 24.2Ω
<u>For the device, resistance is 24.2Ω.</u>
Answer:
A) - 1.8 m/s
Explanation:
As we know that whole system is initially at rest and there is no external force on this system
So total momentum of the system must be conserved
so we will have

now plug in all data into above equation



so correct answer is
A) - 1.8 m/s