Answer:
<h2>73 kg</h2>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>73 kg</h3>
Hope this helps you
Answer:
The amount of carbon dioxide is little in deionized water.
Explanation:
Deionized water is a water with little or no impurities. Impurities are in waters are not able to boil below or above the boiling point of water,and in this case are been retained in the original container.
Answer:
1000 N
Explanation:
First, we need to find the deceleration of the running back, which is given by:

where
v = 0 is his final velocity
u = 5 m/s is his initial velocity
t = 0.5 s is the time taken
Substituting, we have

And now we can calculate the force exerted on the running back, by using Newton's second law:

so, the magnitude of the force is 1000 N.
Well Inertia means something wants to stay in place, and in reality that coin wants to stay in one place, If you placed it on an index card on a cup, and SLOWLY pulled it, it wouldn't be fast enough to overcome that force, if you pulled it quickly that coin would stay in place and drop into the cup.
Answer:
Trial 1 is the largest, trial 3 is the smallest
Explanation:
Given:
<em>Trial 1</em>
M₁ = 6·10²² kg
d₁ = 3 500 km = 3.5·10⁶ м
<em>Trial 2</em>
M₂ = 6·10²² kg
d₂ = 7 000 km = 7·10⁶ м
<em>Trial 3</em>
M₃ = 3·10²² kg
d₃ = 7 000 km = 7·10⁶ м
___________
F - ?
Gravitational force:
F₁ = G·m·M₁ / d₁² = m·6.67·10⁻¹¹·6·10²² / (3.5·10⁶)² = 0.37·m (N)
F₂ = G·m·M₂ / d₂² = m·6.67·10⁻¹¹·6·10²² / (7·10⁶)² = 0.08·m (N)
F₃ = G·m·M₃ / d₃² = m·6.67·10⁻¹¹·3·10²² / (7·10⁶)² = 0.04·m (N)
Trial 1 is the largest, trial 3 is the smallest