Answer:
Ball A
Explanation:
Let the initial speed of the balls be u .
Angle of projection for ball A = 20°
Angle of projection for ball B = 75°
As we know that at highest point, the ball has only horizontal speed which always remains constant throughout the motion because the acceleration in horizontal direction is zero.
Speed of ball A at highest point = u Cos 20° = 0.94 u
Speed of ball B at highest point = u Cos 75° = 0.26 u
So, the ball A has bigger speed than B.
Answer: F(t) = 11 - 0.9(t)
Explanation:
We know the following:
The candle burns at a ratio given by:
Burning Ratio (Br) = 0.9 inches / hour
The candle is 11 inches long.
To be able to create a function that give us how much on the candle remains after turning it after a time (t). We will need to know how much of the candle have been burned after t.
Let look the following equation:
Br = Candle Inches (D) / Time for the Candle to burn (T) (1)
Where (1) is similar to the Velocity equation:
Velocity (V) = Distance (D)/Time(T)
This because is only a relation between a magnitude and time.
Let search for D on (1)
D = Br*T (2)
Where D is how much candle has been burn in a specif time
To create a function that will tell us how longer remains of the candle after be given a variable time (t) we use the total lenght minus (2):
How much candle remains? ( F(t) ) = 11 inches - Br*t
F(t) = 11 - 0.9(t)
F(t) defines the remaining length of the candle t hours after being lit
Answer:
1. a) Draw a line towards the right side from the engine
b) This force pushes the boat forward and helps it accelerate further
2. a) Fixed volume for both solid and liquid
Compressible for only solid
Fixed shape is also for only Solid
b) The answer is 'c'
c) Solids, because they have their particles closely packed therefore they can be compressed (not so sure bout this answer)
Answer:
The velocity of the ball after 5 seconds will be 49 m/s
Explanation:
<em>v = final velocity</em>
<em>u = initial velocity</em>
<em>g = acceleration due to gravity</em>
<em>t = time</em>
Initial velocity of the ball = 0 (As the ball is dropped from rest )
Acceleration due to gravity = 9.8 m/s
Time taken = 5 sec
As the acceleration due to gravity is constant in both the cases we can use the equations of motion in order to solve this question
Part I :- As we already know the values of u,g,ant t we can use the first equation of motion in order to find v
Part II :- As we know the values of u, t , g we can use the second equation of motion in order to find s.
Velocity of the ball after 5 seconds
Distance covered by the ball in 5 sec
Answer:
Explanation:
a ) V( primary ) = 100 V
V( secondary ) = 10 V
No of turns ( secondary ) / No of turns ( primary ) = 10 / 100
= 1 / 10
b ) current in secondary
= volt ( secondary ) / resistance
= 10 /6 = 1.67 A
c )
Average power to secondary
= V ( secondary ) x current ( secondary )
= 10 x 10 / 6
= 16.67 W
d )
Power in primary = power in secondary = 16.67 W
e ) current drawn by ac line ( primary )
Volt ( primary ) x current ( primary ) = power in primary
= 16.67
current ( primary )
= 16.67 / 100
= 0.167 A