Answer:
4.17 m/s²
Explanation:
We are told the reaction time is 0.2 s. Now, during this reaction time the car is going to travel an additional distance of
: x = u × t = 40 × 0.2 = 8 m
where u is the initial velocity of the car which is 40.0 m/s.
We are told that he had 200 m to stop before applying brakes. Thus, after applying brakes, he now has a distance to cover of; s = 200 - 8 = 192 m
Since vehicle is coming to rest acceleration would be negative, thus using Newton's equation of motion, we have;
v
² = u² - 2as
v = 0 m/s since it's coming to rest
u = 40 m/s
s = 192 m
Thus;
0² = 40² - 2(a)(192)
0² = 1600 - 384a
a = 1600/384
a = 4.17 m/s²
-- If the system is 'closed', then nothing ... including energy ... can get in or out, and the total energy inside has to be constant.
If half of the energy in the system starts out as potential energy and the rest starts out as kinetic, and then the potential energy increases, there's only one place the increase could have come from ... it could only have been converted from kinetic energy. So the <em>kinetic energy</em> in the system <em>must</em> <em>decrease</em>.
In fact, this isn't even a "result". The kinetic energy has to decrease <em><u>before</u></em> the potential energy can increase, because that's where the increase has to come from.
If the system is 'open', then energy can come in and go out. If the potential energy inside suddenly increases, we don't know where it came from, so we can't say anything about what happens to the system.
Answer:
The two main factors that affect kinetic energy are mass and speed.
Explanation:
Kinetic energy is the energy that is caused by the motion. The kinetic energy of an object is the energy or force that the object has due to its motion. Your moving vehicle has kinetic energy; as you increase your vehicle's speed, your vehicle's kinetic energy increases.
Have a great day! :D
Answer:
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Explanation:
For this exercise let's use the relationship between momentum and momentum.
I = F t = Δp
in this case the final velocity is zero
F t = 0 -m v₀
F = m v₀ / t
in order to answer the question we must assume that the two vehicles have the same mass and speed
concrete barrier
F₁ = -p₀ / 0.1
F₁ = - 10 p₀
barrier collapses
F₂ = -p₀ / 1
let's look for the relationship of the forces
F₁ / F₂ = 10
therefore the first out is 10 times greater than the second barrier
Answer:
d = 90 ft
Explanation:
Here in each swing the distance sweeps by the swing is half of the initial distance that it will move
So here we can say that total distance in whole motion is given as

since it is half of the distance that it will move in each swing so it would be a geometric progression with common ratio of 1/2
so sum of such GP is given by the formula


