Answer:
220.7
Explanation:
distance traveled is 1.5*5=7.5m
PE gain is MGH=3*9.81*7.5=220.7
Rock fragments that are cemented together and compacted over time turn into sedimentary rock.
the whole process can be summed up as the combination of weathering of rocks to form sediments, transport of the sediments to form deposits, cementation of deposits to forms the sedimentary rocks.
Answer:
k = 1073.09 N/m
A = 0.05 m
Explanation:
Given:
- Time period T = 0.147 s
- maximum speed V_max = 2 m/s
- mass of the block m = 0.67 kg
Find:
- The spring constant k
- The amplitude of the motion A.
Solution:
- A general simple harmonic motion is modeled by:
x (t) = A*sin(w*t)
- The velocity of the above modeled SHM is:
v = dx / dt
v(t) = A*w*cos(w*t)
- Where A is the amplitude in meters, w is the angular speed rad/s and time t is in seconds.
- We can see that maximum velocity occurs when (cos(w*t)) maximizes i.e it is equal to 1 or -1. Hence,
- V_max = A*w
- Where w is related to mass of the object and spring constant k as follows,
w = sqrt ( k / m )
- The relationship between w angular speed and Time period T is:
w = 2*pi / T
- Equating the above two equations we have,
m*(2*pi / T)^2 = k
- Hence, k = 0.67*(2*pi / 0.157)^2
k = 1073.09 N / m
- So, amplitude A is:
A = V_max*sqrt ( m / k )
A = 2*sqrt ( 0.67 / 1073.09 )
A = 0.05 m
I believe the answer is heat.
Answer:
the energy of the photons is greater than the work function of the zinc oxide.
h f> = Ф
Explanation:
In this experiment on the photoelectric effect, it is explained by the Einstein relation that considers the light beam formed by discrete energy packages.
K_max = h f - Ф
in the exercise phase, they indicate that different wavelengths can inject electrons, so the energy of the photons is greater than the work function of the zinc oxide.
h f > = Ф