Density-Dependent:
1<span><span><span><span>. </span>competition.</span><span>
<span>2. </span>overcrowding.</span><span>
3<span>. </span>predators.</span></span><span>
(These are a few from a test I took, hopefully they help you a bit >.<)</span></span>

Explanation:
The acceleration due to gravity g is defined as

and solving for R, we find that

We need the mass M of the planet first and we can do that by noting that the centripetal acceleration
experienced by the satellite is equal to the gravitational force
or

The orbital velocity <em>v</em> is the velocity of the satellite around the planet defined as

where <em>r</em><em> </em>is the radius of the satellite's orbit in meters and <em>T</em> is the period or the time it takes for the satellite to circle the planet in seconds. We can then rewrite Eqn(2) as

Solving for <em>M</em>, we get

Putting this expression back into Eqn(1), we get




Answer:
60.2 J
Explanation:
Efficiency is the ratio of work out to work in.
e = Wout / Win
0.86 = Wout / 70 J
Wout = 60.2 J
Force=A×M
10m/s×0.20kg
=2Newton
Answer:
The fundamental wavelength of the vibrating string is 1.7 m.
Explanation:
We have,
Velocity of wave on a guitar string is 344 m/s
Length of the guitar string is 85 cm or 0.85 m
It is required to find the fundamental wavelength of the vibrating string. The fundamental frequency on the string is given by :

Now fundamental wavelength is :

So, the fundamental wavelength of the vibrating string is 1.7 m.