1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
7

A body with the inertial

Physics
1 answer:
Andrews [41]3 years ago
3 0

Answer:

Explanation:

Hi there,

To get started, recall the kinematic equations from either a textbook, equation sheet, etc. Kinematic equations are used when acceleration is <em>constant,</em> as stated in the prompt.

Best way to use kinematic equations is to see which variable you are looking for, then which variable is unknown to you and is not needed for that equation.

a) average velocity

Takes the form of:

v_a_v_g=\frac{d_t_o_t_a_l}{t}=\frac{v+v_0}{2} this is the literal definition of average velocity; initial plus final divided by 2.

We know total displacement and total time elapsed, so we will use the middle form of the equation:

v_a_v_g=\frac{1640m}{40s}=41 \ m/s

b) the final velocity

We can still use the average velocity formula, as the other two equations that include final velocity have acceleration variable which is unknown as of now.

Solve for final velocity:

v=(2v_a_v_g)-v_o = 2(41 \ m/s) - (8 m/s) = 74 m/s\\ this makes sense, since a velocity later in time is higher than a velocity earlier in time. It is increasing with increasing time because of acceleration.

c) the acceleration

There are two equations that can be used to solve this, but we will use the less time-consuming one, but both produce same answer:

a = \frac{v-v_0}{t_t_o_t_a_l} = \frac{(74-8)m/s}{40s} =1.65 m/s^{2}

Notice, change in velocity over change in time, and acceleration is constant. When acceleration is constant, it models a linear function, and acc. is just slope!

Study well and persevere. If you liked this solution, hit Thanks or give a rating!

thanks,

You might be interested in
Why the specific heat capacity of the sun remain constant<br><br>​
gayaneshka [121]
The heat remains constant because there’s nothing to cool it down
7 0
3 years ago
On a bet, you try to remove water from a glass by blowing across the top of a vertical straw immersed in the water. What is the
MArishka [77]

Answer:

       v₂ = 0.56 m / s

Explanation:

This exercise can be done using Bernoulli's equation

        P₁ + ½ ρ v₁² + ρ g y₁ = P₂ + ½ ρ v₂² + ρ g y₂

Where points 1 and 2 are on the surface of the glass and the top of the straw

The pressure at the two points is the same because they are open to the atmosphere, if we assume that the surface of the vessel is much sea that the area of ​​the straw the velocity of the surface of the vessel is almost zero v₁ = 0

The difference in height between the level of the glass and the straw is constant and equal to 1.6 cm = 1.6 10⁻² m

We substitute in the equation

         P_{atm} + ρ g y₁ = P_{atm} + ½ ρ v₂² + ρ g y₂

         ½ v₂² = g (y₂-y₁)

        v₂ = √ 2 g (y₂-y₁)

Let's calculate

        v₂ = √ (2 9.8 1.6 10⁻²)

       v₂ = 0.56 m / s

5 0
3 years ago
An object with a higher temperature can have less thermal energy than an object
Anna [14]
It’s true, because it also depends on things like mass. Higher temperature but less mass< Lower temperature but more mass.
4 0
3 years ago
Hansel pushes a 2 lb. box 5 feet in 20 seconds. How much work has he done?
Licemer1 [7]
Work = force x distance

You can see time doesn’t matter (if we were talking about power, which is the RATE at which work is performed, that would be a different story).

W = 2 x 5 = 10 foot-pounds of work

Foot-pounds are gross units. Better to work in SI units when you can!

8 0
3 years ago
As an intern with an engineering firm, you are asked to measure the moment of inertia of a large wheel, for rotation about an ax
AysviL [449]

Answer:

I=2.766\ kg.m^2

Explanation:

We have:

diameter of the wheel, d=0.88\ m

weight of the wheel, w_w=280\ N

mass of hanging object to the wheel, m_o=6.32\ kg

speed of the hanging mass after the descend, v_o=4\ m.s^{-1}

height of descend, h=2.5\ m

(a)

moment of inertia of wheel about its central axis:

I=\frac{1}{2} m.r^2

I=\frac{1}{2} \frac{w_w}{g}.r^2

I=\frac{1}{2} \times \frac{280}{9.8}\times 0.44^2

I=2.766\ kg.m^2

3 0
3 years ago
Other questions:
  • What is the unit for resistance?
    12·1 answer
  • A 2.0 kg wood block is launched up a wooden ramp that is inclined at a 30° angle. The block’s initial speed is 10 m/s. What vert
    10·1 answer
  • How can tectonic activity change the climate of the earth?
    12·1 answer
  • John stretched while his muscles were cold. Which negative effect could occur?
    8·2 answers
  • What is earth's average distance from the sun called?
    13·2 answers
  • In 1949, an automobile manufacturing company introduced a sports car (the "Model A") which could accelerate from 0 to speed v in
    5·1 answer
  • the majority of the alpha particles passed through with no deflection. what does this suggest about the structure of the atom?
    14·2 answers
  • A horse runs 350 meters in 23 seconds. What was the average speed of the horse? Round your answer to a tenth ​
    5·1 answer
  • 11. All objects gain or release heat at the same rate. *
    15·1 answer
  • How can weather be forecast​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!