Change.
Acceleration means going faster
Initially, the velocity vector is
. At the same height, the x-value of the vector will be the same, and the y-value will be opposite (assuming no air resistance). Assuming perfect reflection off the ground, the velocity vector is the same. After 0.2 seconds at 9.8 seconds, the y-value has decreased by
, so the velocity is
.
Converting back to direction and magnitude, we get 
<h3>
Answer:</h3>
225 meters
<h3>
Explanation:</h3>
Acceleration is the rate of change in velocity of an object in motion.
In our case we are given;
Acceleration, a = 2.0 m/s²
Time, t = 15 s
We are required to find the length of the slope;
Assuming the student started at rest, then the initial velocity, V₀ is Zero.
<h3>Step 1: Calculate the final velocity, Vf</h3>
Using the equation of linear motion;
Vf = V₀ + at
Therefore;
Vf = 0 + (2 × 15)
= 30 m/s
Thus, the final velocity of the student is 30 m/s
<h3>Step 2: Calculate the length (displacement) of the slope </h3>
Using the other equation of linear motion;
S = 0.5 at + V₀t
We can calculate the length, S of the slope
That is;
S = (0.5 × 2 × 15² ) - (0 × 15)
= 225 m
Therefore, the length of the slope is 225 m
Answer:
<u>400</u> J work is done BY the engine.
The internal energy of the gas is <u>620</u> J
Explanation:
The given information are;
The heat added to the cylinder = 620 J
The force applied by the piston of the engine = 8.0 kN = 8,000 N
The distance over which the force moves (the piston) = 5.0 cm = 0.05 m
The work done (by the engine) = Force × Distance = 8,000 N × 0.05 m = 400 J
The internal energy is the sum of the kinetic and potential energy of the system
Therefore, given that the internal energy, U, is the sum total of the energy in the system
∴ U = The heat supplied to the system = 620 J
Which gives;
<u>400</u> J work is done BY the engine.
The internal energy of the gas is <u>620</u> J.
Tom used more Force but over a shorter distance. Tom and Claudia both did the same amount of work.