Answer:
(a) 
(b) P = 0.816 Watt
Explanation:
(a)
The power radiated from a black body is given by Stefan Boltzman Law:

where,
P = Energy Radiated per Second = ?
σ = stefan boltzman constant = 5.67 x 10⁻⁸ W/m².K⁴
T = Absolute Temperature
So the ratio of power at 250 K to the power at 2000 K is given as:

(b)
Now, for 90% radiator blackbody at 2000 K:

<u>P = 0.816 Watt</u>
Force=A×M
10m/s×0.20kg
=2Newton
root mean square<span>= square root of ( 3RT/M)
R = 8.314 J/K/mole
T = 25 + 273 = 298 K
M = molecular mas of N2 in kg = 28 X 10^-3 kg
put values...
</span><span> root mean square</span> = square root of ( 3 X 8.314 X 298/28 X 10^-3)
= square root of ( 265454.143)
= 515.2 m/s
so option A is right
hope this helps
Answer:
As the sound approaches, it gets louder (simply because you're closer to the source), and has a higher pitch. Then, as it passes, the sound suddenly dips down, and as it drives away you hear a lower pitch, plus a decreasing volume as the engine gets farther and farther away.
Explanation: