Answer:
measure the position every so often with a stopwatch
Explanation:
A possible method of measurement is to place a measuring tape along the path and measure the position every so often with a stopwatch, with this we can make a graph of position against time and by extrapolation find the initial velocity.
This is a method used in measurements of uniform movements of bodies
Answer:
1. the force which can be felt or act only when two objects are in contact is known as contact force.
for example: frictional force, muscular force,
tension, air resistance .
2. the force which can be felt or act even when two objects are in contact or not is known as non-contact force.
for example: magnetic force, gravitational force, electrostatic force.
The temperature of the substance giving off the heat decreases while the temperature of the substance receilving the heat increases. they leach what is called equlibrium point where heat energy can longer be exchanged hence equql temperature. this isThermal physics
Answer:
V₁ = √ (gy / 3)
Explanation:
For this exercise we will use the concepts of mechanical energy, for which we define energy n the initial point and the point of average height and / 2
Starting point
Em₀ = U₁ + U₂
Em₀ = m₁ g y₁ + m₂ g y₂
Let's place the reference system at the point where the mass m1 is
y₁ = 0
y₂ = y
Em₀ = m₂ g y = 2 m₁ g y
End point, at height yf = y / 2
= K₁ + U₁ + K₂ + U₂
= ½ m₁ v₁² + ½ m₂ v₂² + m₁ g
+ m₂ g 
Since the masses are joined by a rope, they must have the same speed
= ½ (m₁ + m₂) v₁² + (m₁ + m₂) g 
= ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g 
How energy is conserved
Em₀ = 
2 m₁ g y = ½ (m₁ + 2m₁) v₁² + (m₁ + 2m₁) g 
2 m₁ g y = ½ (3m₁) v₁² + (3m₁) g y / 2
3/2 v₁² = 2 g y -3/2 g y
3/2 v₁² = ½ g y
V₁ = √ (gy / 3)
Force = work / dis
= 60/ 5
= 12 N