The correct response is D. This is because light is reflected of the building onto the water that is hitting the building.
True a proton carries a positive charge, a neutron carries a neutral charge and an electron carries a negative charge.
Explanation:
a) The height of the ball h with respect to the reference line is

so its initial gravitational potential energy
is



b) To find the speed of the ball at the reference point, let's use the conservation law of energy:

We know that the initial kinetic energy
as well as its final gravitational potential energy
are zero so we can write the conservation law as

Note that the mass gets cancelled out and then we solve for the velocity v as



Answer: find the answer in the explanation
Explanation:
The capillarity of water molecules is different from the mercury molecules.
What is capillarity ?
This is the tendency of a liquid substance to rise in a capillary tube.
Molecules water rises up in a harrow tubes because of the force of adhesion between the water molecules and the tube molecules is greater than the force of cohesion between the water molecules. This helps water to wet the tube and rise. While mercury which is also a liquid falls in a narrow tubes to level below the outside surface because the force of cohesion between the mercury molecules is greater than the force of adhesion between the mercury molecules and the tube molecules. Mercury does not wet.
As the box is moving with a constant velocity, the two forces acting on the box are canceling each other.
Then friction force = 80 Newtons but in the opposite direction.
Friction force = Mu * Normal force exerted by ground = Mu * weight of box
So we find Mu.
Mu = coefficient of friction between box and horizontal surface
= Force of friction / weight = 80 / 50 * 9.81 = 0.163
When an identical box is placed on top, the force of friction is
= Mu * total weight = 0.163 * (50+50) * 9.81 = 159.9 Newtons