Answer : The value of
for the given reaction is, 0.36
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)
First we have to calculate the concentration of
.



Now we have to calculate the value of
for the given reaction.
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)


Therefore, the value of
for the given reaction is, 0.36
The least electronegative component in the electron transport chain is the Hydrogen ion.
The more electronegative is NAD+
The other component is H2O,
Next are the energy carrier molecules which are the ADP and ATP
And finally, the most electronegative is O2.
Rubidium is an element that belongs to Group 1. As such it will have physical properties similar to the other Group 1 elements. Rubidium is below
Potassium in the periodic table but above
Cesium. As such it would be most like one of those two elements.
Explanation:
The answer to questions are
A) 4
B) 3
C) 5
D) 3
E) 3
Answer:
It will become a red giant
Explanation:
When the sun runs out of its hydrogen fuel and the hydrogen atoms are combined together to make helium atoms, it expands into a red giant, which is made up of helium atoms and gases.