The Molar mass of an atom corresponds directly with its atomic mass on the periodic table.
Speific heat capacity is measured with the aid of determining how a whole lot warmth electricity is needed to increase one gram of a substance one digree Celsius. The Speific heat capacity of water is 4.2 joules per gram per degree Celsius or 1 calorie in step with gram per digree Celsius.
The specific heat capacity is defined as the amount of heat (J) absorbed consistent with unit mass (kg) of the substance while its temperature increases 1 ok (or 1 °C), and its units are J/(kg k) or J/(kg °C).
Factors specific heat capacity relate to are temperature and strength.
The Speific heat capacity C can be measured as q = mC∆T
Or, C = q/m∆T
where,
C is the specific heat capacity
q is the quantity of heat required
m is the mass
∆T is the change in temperature
As a consequence so as to degree the specific heat capacity we need to recognize mass of the substance, quantity of heat lost or gain by the substance and the exchange in temperature.
Lear more about Speific heat capacity here: brainly.com/question/17162473
#SPJ4
Answer:
Copper is element number 29
4th row
11th column
Answer:
2.12 moles of gas were added.
Explanation:
We can solve this problem by using<em> Avogadro's law</em>, which states that at constant temperature and pressure:
Where in this case:
We <u>input the data</u>:
- 6.13 L * n₂ = 11.3 L * 2.51 mol
As <em>4.63 moles is the final number of moles</em>, the number of moles added is:
Answer:
The particles begin to vibrate faster and more.
Explanation:
Adding heat to matter increases the energy, thus creating more movement. Eventually, the bucket will melt, turning to a liquid. While it is a sold, it still has particle movement, just not enough to break volume or shape.