At the time that I'll call ' Q ', the height of the stone that was
dropped from the tower is
H = 50 - (1/2 G Q²) ,
and the height of the stone that was tossed straight up
from the ground is
H = 20Q - (1/2 G Q²) .
The stones meet when them's heights are equal,
so that's the time when
<span>50 - (1/2 G Q²) = 20Q - (1/2 G Q²) .
This is looking like it's going to be easy.
Add </span><span>(1/2 G Q²) to each side.
Then it says
50 = 20Q
Divide each side by 20: 2.5 = Q .
And there we are. The stones pass each other
2.5 seconds
after they are simultaneously launched.
</span>
Answer:
The answer is below
Explanation:
Newton's law of gravity states that the force between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distance between them. The law is expressed by the formula:

The masses and distances for this question is in common units, Therefore the result would be in ratios
a) 4 MEarth / 2 MSolar / 3 AU
The force (F) = (4 * 3) / 3² = 4/3
b) 1 MEarth / 1 MSolar / 1 AU
The force (F) = (1 * 1) / 1² = 1
c) 1 MEarth / 2 MSolar / 2 AU
The force (F) = (1 * 2) / 2² = 1/2
can i get the question so that i can answer your question
I think its 980.7
because 9.807 × 100
Answer:
Explanation:
For free body diagram see attached sheet .
W is weight of steel girder acting at the middle point of its length . T is tension in the cable .
OB = √ ( 12² - 2² )
= 11.83 m .
OC = 11.83 / 2 = 5.915 m
Taking moment of tension T and weight W about point O
W x OC = T x OB
22 x 5.915 = T x 11.83
T = 22 x 5.915 / 11.83
= 11 kN
Considering forces acting in vertical direction and equating forces in opposite direction
T + R = W
R = W - T
= 22 - 11 = 11 KN
So force of grinder on the ground = R
= 11 KN.