Answer:
Explanation:
Let the initial velocity of small block be v .
by applying conservation of momentum we can find velocity of common mass
25 v = 75 V , V is velocity of common mass after collision.
V = v / 3
For reaching the height we shall apply conservation of mechanical energy
1/2 m v² = mgh
1/2 x 75 x V² = 75 x g x 10
V² = 2g x 10
v² / 9 = 2 x 9.8 x 10
v² = 9 x 2 x 9.8 x 10
v = 42 m /s
small block must have velocity of 42 m /s .
Impulse by small block on large block
= change in momentum of large block
= 75 x V
= 75 x 42 / 3
= 1050 Ns.
Answer:
The moment arm is 0.6 m
Explanation:
Given that,
First force 
Second force 
Distance r = 0.2 m
We need to calculate the moment arm
Using formula of torque

So, Here,

We know that,
The torque is the product of the force and distance.
Put the value of torque in the equation


Where,
=First force
=First force
=Second force
= distance
Put the value into the formula


Hence, The moment arm is 0.6 m
Answer:
(A) The mass and the initial temperature of the calorimeter water will be incorrect and affect the calculation of the specific heat capacity of the metal.
A. 60 miles
B. 5 hours
Unless you are looking for slope, in which case the answer is different
W = _|....F*dx*cos(a)........With F=force, x=distance over which force acts on object,
.......0.............................and a=angle between force and direction of travel.
Since the force is constant in this case we don't need the equation to be an integral expression, and since the force in question - the force of friction - is always precisely opposite the direction of travel (which makes (a) equal to 180 deg, and cos(a) equal to -1) the equation can be rewritted like so:
W = F*x*(-1) ............ or ............. W = -F*x
The force of friction is given by the equation: Ffriction = Fnormal*(coeff of friction)
Also, note that the total work is the sum of all 45 passes by the sandpaper. So our final equation, when Ffriction is substituted, is:
W = (-45)(Fnormal)(coeff of friction)(distance)
W = (-45)...(1.8N).........(0.92).........(0.15m)
W = ................-11.178 Joules