Answer:
I would use calorimetric to determine the specific heat and I would measure the mass of a sample
Explanation:
I would use calorimetry to determine the specific heat.
I would measure the mass of a sample of the substance.
I would heat the substance to a known temperature.
I would place the heated substance into a coffee-cup calorimeter containing a known mass of water with a known initial temperature.
I would wait for the temperature to equilibrate, then calculate temperature change.
I would use the temperature change of water to determine the amount of energy absorbed.
I would use the amount of energy lost by substance, mass, and temperature change to calculate specific heat.
Answer:
=1.666 liters
Explanation:
1 mole of a has at standard temperature and pressure occupies a volume of 22.4 liters.
0.5 moles of nitrogen occupy a volume of (0.5 moles×22.4 dm³/mol)/ 1
=11.2 liters.
Standard pressure= 1 atmosphere (Atm)
Standard temperature = 273.15 Kelvin
According to Combined gas equation, P₁V₁/T₁=P₂V₂/T₂
Let us take the conditions under standard conditions as the reference, with the subscript 1 and the conditions under the 5L container to be scenario 2 with subscript 2.
Therefore P₂ =P₁V₁T₂/T₁V₂
Substituting for the values we get:
P₂= (1 atm× 11.2L ×203K)/ (273K×5L)
=1.666 atm
Answer:
The body has levels of organization that build on each other. Cells make up tissues, tissues make up organs, and organs make up organ systems. The function of an organ system depends on the integrated activity of its organs.
For part of our orbit the northern half of Earth is tilted toward the Sun. This is summer in the northern hemisphere; there are longer periods of daylight, the Sun is higher in the sky, and the Sun's rays strike the surface more directly, giving us warmer temperatures.