Answer:
The heat that was used to melt the 15.0 grams of ice at 0°C is 4,950 Joules
Explanation:
The mass of ice in the beaker = 15.0 grams
The initial temperature of the ice = 0°C
The final temperature of the ice = 0°C
The latent heat of fusion of ice = 330 J/g
The heat required to melt a given mass of ice = The mass of the ice to be melted × The latent heat of fusion of ice
Therefore, the heat, Q, required to melt 15.0 g of ice = 15.0 g × 330 J/g = 4,950 J
The heat that was used to melt the 15.0 grams of ice = 4,950 Joules.
Answer:
0.296 J/g°C
Explanation:
Step 1:
Data obtained from the question.
Mass (M) =35g
Heat Absorbed (Q) = 1606 J
Initial temperature (T1) = 10°C
Final temperature (T2) = 165°C
Change in temperature (ΔT) = T2 – T1 = 165°C – 10°C = 155°C
Specific heat capacity (C) =..?
Step 2:
Determination of the specific heat capacity of iron.
Q = MCΔT
C = Q/MΔT
C = 1606 / (35 x 155)
C = 0.296 J/g°C
Therefore, the specific heat capacity of iron is 0.296 J/g°C
The HCl added = 1.25 moles
and the moles of Na2HPO4 = 1 mole
Now when acid is added in the given solution of Na2HPO4
One mole of H+ will react with one mole of Na2HPO4 to given one mole of NaH2PO4
Na2HPO4 + H+ ---> NaH2PO4
Now this one mole formed NaH2PO4 will further react with 0.25 moles of H+ left to form 0.25 moles of H3PO4 and 0.75 moles of NaH2PO4 will remain in the solution
So this will result into formation of a buffer of phosphoric acid and NaH2PO4
NaH2PO4 + H+ ---> H3PO4
pKa of H3PO4 = 2.1
so pH = pKa + log [salt] / [acid] = 2.1 + log [0.75 / 0.25] = 2.58
so the pH will be in between 2.1 to 7.2
H = planks constant
<span>m = mass of the object </span>
<span>u = velocity of the object </span>
<span>h = 6.626 * 10^-34 J/s </span>
<span>the mass of an electron is 9.12*10^-31 kg </span>
<span>10% speed of light = 10% * 3*10^8 = 3*10^7 m/s, i dont have my graphing calc with me right now so i leave the technicalities up to you </span>
Answer:
eheheehehehszndn!jejxxnndrrjrrrfufurururufjththjrjrjdjjjrj\u\ujrjeejrjjjj carbon