First, we calculate for the weight of the object by multiplying the given mass by the acceleration due to gravity which is equal to 9.8 m/s²
Weight = (14 kg)(9.8 m/s²)
Weight = 137.2 N
The component of the weight that is along the surface of the inclined plane is equal to this weight times the sine of the given angle.
Weight = (137.2 N)(sin 52°)
weight = 108.1 N
Answer:
The solution and the explanation are in the Explanation section.
Explanation:
According to the diagram that is in the attached image, the EFFORT force at point A and the load is at O point. The torque due to weight is:
TA = W * (a * cosθ)
The torque due to effort at C point is:
TC = E * (b * cosθ)
The net torque is equal to 0, we have:
Tnet = 0
W * (a * cosθ) - E * (b * cosθ) = 0

From the figure, you can observe that a/b < 1, thus E < W
Answer:
40 V
Explanation:
I will assume that the resistors are
100 and 3900 and 1000 OHMS <=====(NOT W)
In series , the resistances add together 100 + 3900 + 1000 = 5000 ohms total
V = IR
I = V / R so the total current will be 200 v / 5000 ohms = .04 amps
this is the current through all of the resistors
so for the 1000 ohm resistor V = IR .04 (1000) = 40 V
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping