Answer:
The general equation for conservation of momentum during a collision between n number of objects is given as: [m i ×v i a ] = [m i ×v i b ] Where m i is the mass of object i , v i a is the velocity of object i before the collision, and v i b is the velocity of object i after the collision.
Explanation:
Well I think B hope this helps
The answer is B. Remain still.
Answer: when a object gets slowed down, it's force is either going into friction and drag, if it's on the ground, and weight+drag+friction, if it's in the air.
Explanation:
By using the second law of Newton, the frictional force is 200N.
We need to know about the second law of Newton (force) to solve this problem. The total force applied an object is proportional to the mass of object and acceleration. It can be defined as
∑F = m . a
where F is force, m is mass and a is acceleration.
From the question above, we know that
F1 = 200N
v = constant therefore (a = 0 m/s²)
By using second law of Newton, we get
∑F = m . a
F1 - Ffriction = m . 0
200 - Ffriction = 0
Ffriction = 200 N
Hence, the frictional force is 200N.
Find more on force at: brainly.com/question/25239010
#SPJ4