Answer:
The water lost is 36% of the total mass of the hydrate
Explanation:
<u>Step 1:</u> Data given
Molar mass of CuSO4*5H2O = 250 g/mol
Molar mass of CuSO4 = 160 g/mol
<u>Step 2:</u> Calculate mass of water lost
Mass of water lost = 250 - 160 = 90 grams
<u>Step 3:</u> Calculate % water
% water = (mass water / total mass of hydrate)*100 %
% water = (90 grams / 250 grams )*100% = 36 %
We can control this by the following equation
The hydrate has 5 moles of H2O
5*18. = 90 grams
(90/250)*100% = 36%
(160/250)*100% = 64 %
The water lost is 36% of the total mass of the hydrate
Molar mass CH4 = 16.0 g/mol
* number of moles:
932.3 / 16 => 58.26875 moles
T = 136.2 K
V = 0.560 L
P = ?
R = 0.082
Use the clapeyron equation:
P x V = n x R x T
P x 0.560 = 58.26875 x 0.082 x 136.2
P x 0.560 = 650.76
P = 650.76 / 0.560
P = 1162.07 atm
This is a one-step unit analysis problem. Since we are staying in moles, grams of our compound, and thus molar mass, is not needed.
1 mole is equal to 6.022x10²³ particles as given, so:

<h3>
Answer:</h3>
2.49 mol
Let me know if you have any questions.
Answer:
Ne, Ar, and Kr are gases at STP, unreactive, and are generally monatomic.
Explanation:
they are unreactive and monoatomic and thats why have a very low boiling point.