Mechanical wave shows dual nature
<span>A moving electrical charge produces a magnetic field and a moving magnetic field produces an electrical field. An electromagnet works by coiling a bunch of wire and spinning a couple of magnets around that wire at high speeds. When this occurs the magnets induce an electric current in the wire and hence the electricity production. Once the magnets stop spinning, the induced electrical field dissipates and the current stops flowing through the wire.
</span>
Answer:
v = 2.928 10³ m / s
Explanation:
For this exercise we use Newton's second law where the force is the gravitational pull force
F = ma
a = F / m
Acceleration is
a = dv / dt
a = dv / dr dr / dt
a = dv / dr v
v dv = a dr
We substitute
v dv = a dr
∫ v dv = 1 / m G m M ∫ 1 / r² dr
We integrate
½ v² = G M (-1 / r)
We evaluate from the lower limit v = 0 for r = R m to the upper limit v = v for r = R + 2.73 10³, where R is the radius of Saturn's moon
v² = 2G M (- 1 / R +2.73 10³+ 1 / R)
We calculate
v² = 2 6,674 10⁻¹¹ 1.10 10²¹ (10⁻³ / 5.61 - 10⁻³ /(5.61 + 2.73))
v² = 14.6828 10⁷ (0.1783 -0.1199)
v = √8.5748 10⁶
v = 2.928 10³ m / s
GPE I am assuming is gravitational potential energy. I'll denote it as U for simplicity.
U = mgy
U = (70kg)(9.81m/s^2)(1m) = 686.7J
U = 686.7J
Hope this helps!