Answer:
1. the electromagnetic wave.
Explanation:
Mathematically,
wavelength = velocity ÷ frequency
A mechanical wave is a wave that is not capable of transmitting its energy through a vacuum. Mechanical waves require a medium in order to transport their energy from one location to another. A sound wave is an example of a mechanical wave. Sound waves are incapable of traveling through a vacuum.
Electromagnetic waves of different frequency are called by different names since they have different sources and effects on matter, increasing frequency decreases wavelength.
Sound waves (which obviously travel at the speed of sound) are much slower than electromagnetic waves (which travel at the speed of light.)
Electromagnetic waves are much faster than sound waves and If the Velocity of the wave increases and the frequency is constant, the wavelength also increases.
Answer:
When there is wind it takes longer
Explanation:
With no wind, the round trip time is

When we have a constant wind speed w

comparing the reciprocal times;

This means that t1 is smaller than t2, ergo, it takes longer with wind
A mechanical wave<span> requires an initial energy input. Once this initial energy is added, the </span>wave travels through<span> the medium until all its energy is transferred.</span>
Speed=60. 240 divided by 4= 60k which is the total speed
Answer:
λ₁ = 2.50 10⁻² m, λ₂ = 1.66 10⁻² m
Explanation:
Microwave communication is very efficient because it does not have atmospheric interference, for which it is widely used and has been regulated to avoid interference, the ku band is in the range between 12 and 18 GHz.
Let's calculate the wavelength for the two extreme frequencies of this band
wavelength and frequency are related
c = λ f
λ = c / f
f₁ = 12 GHz = 12 10⁹ Hz
λ₁ = 3 10⁸ /12 10⁹
λ₁ = 2.50 10⁻² m
f₂ = 18 GHz = 18 10⁹ Hz
λ₂ = 3 10⁸ /18 10⁹
λ₂ = 1.66 10⁻² m
Unfortunately in your exercise the specific frequency is not fired, for significant figures they must be the same number as the figures of the frequency, in general the frequency has 3 or 4 significant figures