To solve this problem we will apply the theorem given in the conservation of energy, by which we have that it is conserved and that in terms of potential and kinetic energy, in their initial moment they must be equal to the final potential and kinetic energy. This is,


Replacing the 5100MJ for satellite as initial potential energy, 4200MJ for initial kinetic energy and 5700MJ for final potential energy we have that



Therefore the final kinetic energy is 3600MJ
Answer:
q = 0.036 C
Explanation:
Given that,
Current passes through a defibrillator, I = 18 A
Time, t = 2 ms
We need to find the charge moved during this time. We know that,
Electric current = charge/time

Put all the values,

So, 0.036 C of charge moves during this time.
<u>Answer:</u>
According to newton's first law of motion, friction is required to make an object slow down.
<u>Explanation:</u>
According to the Newton's first law of motion, for an object to change its velocity (either a change in the magnitude or the direction), there must be a cause to it which is defined as a net external force.
For example, an object which is sliding across a table or floor slows down due to the net force of friction that is acting on that object.
Answer:

Explanation:
given,
side of square loop = a = 2.10 cm
Resistance of the wire = 1.30×10⁻² Ω
Length of the loop = c = 1.10 cm
rate of increasing current = 130 A/s





