You did not provide the options. However, the options are
I = 6.0, R= 4.0 ohms
I = 9.0, R= 2.0ohms
I = 3.0, R= 2.0ohms
I = 8.0, R= 8.0 ohms
Answer:
The order of the resistors from the highest to the lowest is:
I = 8.0, R= 8.0 ohms
I = 6.0, R= 4.0 ohms
I = 9.0, R= 2.0ohms
I = 3.0, R= 2.0 ohms
Explanation:
ohm's law states that voltage across a conductor is directly proportional to the current flowing through it. V = IR
Based on this formula, the voltages in each of the resistors are calculated below from the highest to the lowest
V = 8 * 8 =64 volts
V = 6 * 4 =24 volts
V = 9 * 2 =18 volts
V = 3 * 2 =6 volts
Answer:
The magnetic field will be
, '2d' being the distance the wires.
Explanation:
From Biot-Savart's law, the magnetic field (
) at a distance '
' due to a current carrying conductor carrying current '
' is given by

where '
' is an elemental length along the direction of the current flow through the conductor.
Using this law, the magnetic field due to straight current carrying conductor having current '
', at a distance '
' is given by

According to the figure if '
' be the current carried by the top wire, '
' be the current carried by the bottom wire and '
' be the distance between them, then the direction of the magnetic field at 'P', which is midway between them, will be perpendicular towards the plane of the screen, shown by the
symbol and that due to the bottom wire at 'P' will be perpendicular away from the plane of the screen, shown by
symbol.
Given
and 
Therefore, the magnetic field (
) at 'P' due to the top wire

and the magnetic field (
) at 'P' due to the bottom wire

Therefore taking the value of
the net magnetic field (
) at the midway between the wires will be

Answer:
1.52 seconds
Explanation:
Step 1: identity the given parameters
Initial velocity (u) = 12m/s
Height above ground (h1) = 4m
Final velocity (V) = 0
Step 2: calculate the height travelled by the object from 4m height (h2).
V^2 = U^2 -2gh
0= 12^2-2(9.8*h)
2(9.8*h) = 12^2
19.6*h = 144
h = 144/19.6
h = 7.347 m
Total height above ground (ht) = 4m +7.347m = 11.347m
Step 3: calculate the time reach ground
T = √(2h/g)
T = √(2*11.347/9.8)
T= √(22.694/9.8)
T= √2.316
T= 1.52 seconds
Answer:
equal to the force the trailer exerts on the road.
Explanation:
Because of the tension of the rope, the force that the SUV exerts on the trailer is equal and opposite to the force that the trailer exerts on the SUV. This is explained in Newton's third law of motion, which states that for every action, there is always an equal and opposite reaction.