Answer:
The galaxy is moving away from the observer
Explanation: when a galaxy is moving away from us, the light we percieve from it is "streched". Since the wavelength has an inverse raltionship whith frequency, the longer the wavelength is, the lower the frequency. And lower frequencies correspond to red and infrarred light.
So when we see the light has shifted to the infrarred part of the spectrum, it means the source is traveling away from us, making the light waves we percieve streched and move from visible light to infrarred.
Answer: Velocity=8.26m/s
Explanation:
Acceleration=Finial velocity (V) - Initial velocity (u) ÷ Time
that is, a=v-u/t
a=1.2m/s², v=?, u=5.5m/s, t=2.3s
From a=v-u/t, make v the subject of the formula
v=at + u
v=(1.2* 2.3) + 5.5
v=2.76+5.5
v=8.26m/s
Answer:
The object will travel 675 m during that time.
Explanation:
A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.
In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.
In this case, the position is calculated using the expression:
x = xo + vo*t + ½*a*t²
where:
- x0 is the initial position.
- v0 is the initial velocity.
- a is the acceleration.
- t is the time interval in which the motion is studied.
In this case:
- x0= 0
- v0= 0 because the object is initially stationary
- a= 6

- t= 15 s
Replacing:
x= 0 + 0*15 s + ½*6
*(15s)²
Solving:
x=½*6
*(15s)²
x=½*6
*225 s²
x= 675 m
<u><em>
The object will travel 675 m during that time.</em></u>
Answer:
3.6 seconds
Explanation:
Given:
y₀ = y = 0 m
v₀ = 31 sin 35° m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
0 = 0 + (31 sin 35°) t + ½ (-9.8 m/s²) t²
0 = 17.78t − 4.9t²
0 = t (17.78 − 4.9t)
t = 0 or 3.63
Rounded to the nearest tenth, the ball lands after 3.6 seconds.
W=mgh W=(20)(9.8)(1) w=196J