Answer:
15 N
Explanation:
The magnetic force on a piece of current-carrying wire is given by:

where
I is the current in the wire
L is the length of the piece of wire
B is the magnetic field strength
is the angle between the direction of B and I
In this problem:
I = 10 A
B = 0.3 T
L = 5 m

Substituting into the equation, we find

Answer:
25.8 lb/in²
Explanation:
Gay-Lussac's law tells us that given an ideal gas of a certain mass has a constant volume, the pressure exerted on the sides of its container is directly proportional to its absolute temperature.

Nope Copper is a better conductor
Answer:
A solenoid is a device comprised of a coil of wire, the housing and a moveable plunger (armature). When an electrical current is introduced, a magnetic field forms around the coil which draws the plunger in. More simply, a solenoid converts electrical energy into mechanical work.
Explanation:
The coil is made of many turns of tightly wound copper wire. When an electrical current flows through this wire, a strong magnetic field/flux is created.
The housing, usually made of iron or steel, surrounds the coil concentrating the magnetic field generated by the coil.
The plunger is attracted to the stop through the concentration of the magnetic field providing the mechanical force to do work.
First, foremost, and most critically, you must look at the graph, and critically
examine its behavior from just before until just after the 5-seconds point.
Without that ability ... since the graph is nowhere to be found ... I am hardly
in a position to assist you in the process.