Answer: x ≈ 36.3 cm
Explanation:
Conservation of momentum during the collision
0.0340(120) + 1.24(0) = (0.0340 + 1.24) v
v = 3.2025 m/s
The kinetic energy of the block/bullet mass will convert to spring potential
½kx² = ½mv²
x = √(mv²/k)
x = √(1.274(3.2025²) / 99.0)
x = 0.363293... ≈ 36.3 cm
Answer:
i know its definetly either clockwise or counter clockwise
Explanation:
Answer:
a) 
b) 
c) 
d)
or 18.3 cm
Explanation:
For this case we have the following system with the forces on the figure attached.
We know that the spring compresses a total distance of x=0.10 m
Part a
The gravitational force is defined as mg so on this case the work donde by the gravity is:

Part b
For this case first we can convert the spring constant to N/m like this:

And the work donde by the spring on this case is given by:

Part c
We can assume that the initial velocity for the block is Vi and is at rest from the end of the movement. If we use balance of energy we got:

And if we solve for the initial velocity we got:

Part d
Let d1 represent the new maximum distance, in order to find it we know that :

And replacing we got:

And we can put the terms like this:

If we multiply all the equation by 2 we got:

Now we can replace the values and we got:


And solving the quadratic equation we got that the solution for
or 18.3 cm because the negative solution not make sense.
Answer:
Distance
Explanation:
Gravity is indirectly related to distance. This means if distance increases, gravitational pull decreases.
Answer:
1.8 m/s
Explanation:
momentum = mass × velocity
initial momentum = m1v1+m2v2
= 3×3 +2×0 = 9+0= 9 kg m/s
let combined velocity be V
HENCE
final momentum = total mass × velocity
= (3+2) × V = 5V
According to law of conservation of momentum
final momentum = initial momentum
5V = 9
V =9/5
V = 1.8 m/s