Answer:
0.94 m³/s
Explanation:
From the question given above, the following data were obtained:
Air flow (in ft³/min) = 2×10³ ft³/min
Air flow (in m³/s) =.?
Next, we shall convert 2×10³ ft³/min to m³/min. This can be obtained as follow:
35.315 ft³/min = 1 m³/min
Therefore,
2×10³ ft³/min = 2×10³ ft³/min × 1 m³/min / 35.315 ft³/min
2×10³ ft³/min = 56.63 m³/min
Finally, we shall convert 56.63 m³/min to m³/s. This can be obtained as follow:
1 m³/min = 1/60 m³/s
Therefore,
56.63 m³/min = 56.63 m³/min × 1/60 m³/s ÷ 1 m³/min
56.63 m³/min = 0.94 m³/s
Thus, 2×10³ ft³/minis equivalent to 0.94 m³/s.
Answer:
<h2>
44 m/s</h2>
Explanation:
In this problem we are expected to calculate the velocity of Georges movements.
Given data
Total distance covered by George= 850+250= 1100 meters
Time taken by George to cover the total distance= 25 seconds
We know that velocity is, v= distance/ time
Therefore substituting our data into the expression for velocity we have
v= 1100/ 25= 44 m/s
Hence the velocity in m/s is 44
Answer:
The electron is a subatomic particle, symbol e⁻ or β⁻ , whose electric charge is negative one elementary charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure
Explanation:
functions of electrons
and electrons being the negatively charged particles of atom. Together, all of the electrons of an atom create a negative charge that balances the positive charge of the protons in the atomic nucleus
These are known as balanced forces because they will not change the motion of the object, and it will remain at rest unless forces become unbalanced- meaning they would be unequal and not opposing.
Answer:
0.4
Explanation:
Given that a particular inductor is connected to a circuit where it experiences a change in current of 0.8 amps every 0.10 sec. If the inductor has a self-inductance of 2.0 V, what is the inductance
Using the power formula
P = IV
Substitute all the parameters
P = 0.8 × 2
P = 1.6 W
But P = I^2 R
Substitute power and current
1.6 = 0.8^2 R
R = 1.6 / 0.64
R = 2.5 ohms
Inductance = reciprocal of resistance
Inductance = 1 / 2.5
Inductance = 0.4