3 km in 20 min => 9 km in 60 min => 9km in 1h =>
the correct answer is d: 9 km/h
Answer:
<em>The balloon is 66.62 m high</em>
Explanation:
<u>Combined Motion
</u>
The problem has a combination of constant-speed motion and vertical launch. The hot-air balloon is rising at a constant speed of 14 m/s. When the camera is dropped, it initially has the same speed as the balloon (vo=14 m/s). The camera has an upward movement for some time until it runs out of speed. Then, it falls to the ground. The height of an object that was launched from an initial height yo and speed vo is

The values are


We must find the values of t such that the height of the camera is 0 (when it hits the ground)


Multiplying by 2

Clearing the coefficient of 

Plugging in the given values, we reach to a second-degree equation

The equation has two roots, but we only keep the positive root

Once we know the time of flight of the camera, we use it to know the height of the balloon. The balloon has a constant speed vr and it already was 15 m high, thus the new height is



Answer:
Explanation:
Mass =11.2kg
Constant velocity =3.3m/s
μk=0.25
Since the body is moving in constant velocity, then the acceleration is zero(0).
ΣF = Σ(ma)
The normal force acting on the body is upward and the weight is acting downward
Then ΣFy=0
Therefore, N=W
W=mg=11.2×9.8=109.76N
So, N=W=109.76N
Frictional force is given as
Fr=μkN
Fr=0.25×109.76
Fr=27.44N
Frictional force acting against the motion is 27.44N
Then the forward force moving the body forward
ΣF = Σ(ma)
Since a = 0
Then,
ΣF = 0
F-Fr=0
Then F=Fr
So the force moving the body forward is 27.44N
Speed, frequency and wavelength are interconnected to each other.
<h3>What happens to the wavelength if the frequency increases?</h3>
As a wavelength increases in size, its frequency and energy (E) decrease. As the frequency increases, the wavelength gets shorter. As the frequency decreases, the wavelength gets longer.
The wave speed is equal to the product of its frequency and wavelength, which shows the relationship between frequency and wavelength.
So we can conclude that speed, frequency and wavelength are interconnected to each other.
Learn more about frequency here: brainly.com/question/254161
<span>The absolute magnitude of a star is how bright it would appear to us
if it were located ten parsecs (about 32.6 light years) from us. So it's
a way of treating all stars equally ... on a "level playing field" ... and it
describes each star's actual brightness. </span>