Answer:
the frequency of the oscillation is 1.5 Hz
Explanation:
Given;
mass of the spring, m = 1500 kg
extention of the spring, x = 5 mm = 5 x 10⁻³ m
mass of the driver = 68 kg
The weight of the driver is calculated as;
F = mg
F = 68 x 9.8 = 666.4 N
The spring constant, k, is calculated as;
k = F/m
k = (666.4 N) / (5 x 10⁻³ m)
k = 133,280 N/m
The angular speed of the spring is calculated;

The frequency of the oscillation is calculated as;
ω = 2πf
f = ω / 2π
f = (9.426) / (2π)
f = 1.5 Hz
Therefore, the frequency of the oscillation is 1.5 Hz
The first right-hand rule determines the directions of magnetic force, conventional current and the magnetic field. Given any two of theses, the third can be found.
The second Right-Hand Rule determines the direction of the magnetic field around a current-carrying wire and vice-versa<span> </span>
So, assuming that a magnetic field <span>exists and its direction is known and assuming that a charged particle moves in a specific direction through that field with velocity (v(, to determine the direction of force on the particle we should use the second right-hand rule.</span>
2.Cotton, polyester, nylon, rayon or can also be made by wool
Answer:
The impedance of this circuit is 200 ohm.
Explanation:
Given that,
rms voltage = 120 v
Frequency = 60.0 Hz
rms current = 0.600 A
We need to calculate the impedance
Using formula of impedance

Where,
= rms voltage
= rms current
Z= impedance
Put the value into the formula


Hence, The impedance of this circuit is 200 ohm.
The normal force is the supporting force that is exerted on an object that is in contact with another stable object.
Answer: Option C
<u>Explanation:
</u>
Normal force is forward or upward pushing force acting on an object. Mostly the normal force acts as supporting force exerted on the object by the neighbouring stable object with which the object in question is in contact. So normal force falls under the category of contact forces.
Generally, normal force will be acting to support the weight of any object placed on another object. The best examples of normal forces are the weight of the book supported by table or by the pushing force of the wall on the person leaning on the wall.