The answer is Photosphere Apex.
The options for given question are as follow,
1) Methane molecules show hydrogen bonding.
<span>2) Ammonia molecules show hydrogen bonding. </span>
<span>3) Methane has stronger hydrogen bonding than ammonia. </span>
<span>4) Both the compounds do not show hydrogen bonding. </span>
<span>5) Both the compounds have strong hydrogen bonding.
</span>
Answer:
Correct answer is Option-2 (Ammonia molecules show hydrogen bonding).
Explanation:
Hydrogen bond interactions are formed when a partial positive hydrogen atom attached to most electronegative atom of one molecule interacts with the partial negative most electronegative element of another molecule. So, in Ammonia hydrogen gets partial positive charge as nitrogen is highly electronegative. While the C-H bond in Methane is non-polar and fails to form hydrogen bond interactions.
Answer:
It is basically a way of telling you how to solve for different variables in the equation d=m/v
Explanation:

<h3>Further explanation</h3>
Given
3000 L of gas at 39°C and 99 kPa to 45.5 kPa and 16°C,
Required
the new volume
Solution
Combined with Boyle's law and Gay Lussac's law

T₁ = 39 + 273 = 312
T₂ = 16 + 273 = 289
Input the value :
V₂ = (P₁V₁.T₂)/(P₂.T₁)
V₂ = (99 x 3000 x 289)/(45.5 x 312)
or we can write it as:
V₂ = 3000 L x (289/312) x (99/45.5)
Answer: The approximate molecular mass of the polypeptide is 856 g/mol
Explanation:
To calculate the concentration of solute, we use the equation for osmotic pressure, which is:
Or,
where,
= osmotic pressure of the solution = 4.19 torr
i = Van't hoff factor = 1 (for non-electrolytes)
Mass of solute (polypeptide) = 0.327 g
Volume of solution = 1.70 L
R = Gas constant =
T = temperature of the solution =
Putting values in above equation, we get:
Hence, the molar mass of the polypeptide is 856 g/mol