Your answer can be either 92 900 000 or 9.29e+7
Answer:
1.785 m/s
Explanation:
The momentum can be calculated using the expression below
M1 *V1 + M2 * V2 = (M1+M2) V3
M1= mass of van=9000 kg
M2= mass of car= 850kg
V3= velocity of entangled car
V1= Velocity of the van= 0
V2= velocity of the car= 5 m/ s
Substitute the values
(900×0) + (500×5)=( 900+500)× V3
2500=1400 V3
V3=2500/1400
V3= 1.785 m/s
Hence, velocity of the entangled cars after collision is 1.785 m/s
Answer:
Stretch can be obtained using the Elastic potential energy formula.
The expression to find the stretch (x) is
Explanation:
Given:
Elastic potential energy (EPE) of the spring mass system and the spring constant (k) are given.
To find: Elongation in the spring (x).
We can find the elongation or stretch of the spring using the formula for Elastic Potential Energy (EPE).
The formula to find EPE is given as:
Rewriting the above expression in terms of 'x', we get:
Example:
If EPE = 100 J and spring constant, k = 2 N/m.
Elongation or stretch is given as:
Therefore, the stretch in the spring is 10 m.
So, stretch in the spring can be calculated using the formula for Elastic Potential Energy.
Answer:
- 670 kg.m/s
Explanation:
Newton's third law states that to every action, there is equal and opposite reaction force. Since the force will be same but different in direction and acted in the same time then the impulses ( force multiply by time) of the two car be same in magnitude but different in direction - 670 kg.m/s