1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Murrr4er [49]
4 years ago
10

The femur is a bone in the leg whose minimum cross-sectional area is about 3.70 10-4 m2. A compressional force in excess of 6.60

104 N will fracture this bone. (a) Find the maximum stress that this bone can withstand. (b) What is the strain that exists under a maximum-stress condition
Physics
1 answer:
leva [86]4 years ago
7 0

Answer:

178378378.37 Pa

0.01897

Explanation:

F = Force = 6.6\times 10^4\ N

A = Area = 3.7\times 10^{-4}\ m^2

Y = Young's modulus of bone under compression = 9.4\times 10^{9}\ Pa

\varepsilon = Strain

Stress is given by

\sigma=\frac{F}{A}\\\Rightarrow \sigma=\frac{6.6\times 10^4}{3.7\times 10^{-4}}\\\Rightarrow \sigma=178378378.37\ Pa

The maximum stress that this bone can withstand is 178378378.37 Pa

Compression force is given by

F=Y\varepsilon A\\\Rightarrow \varepsilon=\frac{F}{YA}\\\Rightarrow \varepsilon=\frac{6.6\times 10^4}{9.4\times 10^{9}\times 3.7\times 10^{-4}} \\\Rightarrow \varepsilon=0.01897

The strain that exists under a maximum-stress condition is 0.01897

You might be interested in
A jet engine gets its thrust by taking in air, heating and compressing it, and
nadya68 [22]

Answer:

F=ma=20\ Kg\ 400\ m/s^2=8,000\ Nw

Explanation:

Thrust is known as a reaction force which appears when a system expels or accelerates mass in one specific direction. If we know the acceleration and the mass of the air expelled by the jet engine, we can compute the thrust .

The acceleration is calculated by using the dynamics formula

\displaystyle a=\frac{v_f-v_o}{t}

The values are  

v_f=500\ m/s,\ v_o=100\ m/s,\ t=1\ sec

\displaystyle a=\frac{500-100}{1}=400\ m/s^2

The thrust is

F=ma=20\ Kg\ 400\ m/s^2=8,000\ Nw

4 0
4 years ago
Determine W (or fuel energy) required to launch a satellite of mass m at rest from a launching pad placed at the surface earth,
jeka57 [31]

Answer:

5. 9GmM/(10R)

Explanation:

m is the mass of the satellite

M is the mass of the earth

W is the energy required to launch the satellite

Energy at earth surface = Potential energy (PE) + W

W = Energy at earth surface - Potential energy (PE)

But PE = -\frac{GMm}{R}

Therefore: W = Energy at earth surface - \frac{GMm}{R}

Energy at earth surface (E) at an altitude of 5R = -\frac{GMm}{5r} +\frac{1}{2}mV^2

But V=\sqrt{\frac{GM}{5R} }

Therefore: E=-\frac{GMm}{5R}+\frac{1}{2}m(\sqrt{\frac{GM}{5R} } )^2=  -\frac{GMm}{5R}+\frac{GMm}{10R}  = -\frac{GMm}{10R}

W = E - PE

W=-\frac{GMm}{10R}-(-\frac{GMm}{R})=-\frac{GMm}{10R}+\frac{GMm}{R}=\frac{9GMm}{10R} \\W=\frac{9GMm}{10R}

7 0
3 years ago
What is the frequency of a photon of emr with a wavelength of 2.55x10-3m?
olga nikolaevna [1]

Answer:

f = 1.18 x 10¹¹ Hz

Explanation:

The equation used to find frequency is:

f = c / w

In this form, "f" represents the frequency (Hz), "c" represents the speed of light (3.0 x 10⁸ m/s), and "w" represents the wavelength (m).

Since you have been given the value of the constant (c) and wavelength, you can substitute these values into the equation to find frequency.

f = c / w                                                      <---- Formula

f = (3.0 x 10⁸ m/s) / w                                 <---- Plug 3.0 x 10⁸ in "c"

f = (3.0 x 10⁸ m/s) / (2.55 x 10⁻³ m)            <---- Plug 2.55 x 10⁻³ in "w"

f = 1.18 x 10¹¹ Hz                                         <---- Divide

3 0
2 years ago
If you hadto throw one of the fourtoys above, which one would take the MOST force to throw
ohaa [14]

Answer:

that one

Explanation:

cause its heavier

7 0
3 years ago
A 1000 kg car moving a 10 m/s collides with a stationary 2000 kg truck. The two vehicles interlock as a result of the collision.
IgorLugansk [536]

Answer:

v₃ = 3.33 [m/s]

Explanation:

This problem can be easily solved using the principle of linear momentum conservation. Which tells us that momentum is preserved before and after the collision.

In this way, we can propose the following equation in which everything that happens before the collision will be located to the left of the equal sign and on the right the moment after the collision.

(m_{1}*v_{1})+(m_{2}*v_{2})=(m_{1}+m_{2})*v_{3}

where:

m₁ = mass of the car = 1000 [kg]

v₁ = velocity of the car = 10 [m/s]

m₂ = mass of the truck = 2000 [kg]

v₂ = velocity of the truck = 0 (stationary)

v₃ = velocity of the two vehicles after the collision [m/s].

Now replacing:

(1000*10)+(2000*0)=(1000+2000)*v_{3}\\v_{3}=3.33[m/s]

7 0
3 years ago
Other questions:
  • Which of the following are advantages of
    10·1 answer
  • An 8.0 m, 240 N uniform ladder rests against a smooth wall. The coefficient of static friction between the ladder and the ground
    8·1 answer
  • Why does the speed of sound vary depending on the medium through which it travels. in general?
    14·1 answer
  • What are the three categories of adult development?
    9·1 answer
  • A 10 kg block is pushed with a constant horizontal force of 20 n against a constant horizontal frictional force of 10 n. What is
    9·1 answer
  • A machine part has the shape of a solid uniform sphere of mass 220 g and diameter 4.50 cm . It is spinning about a frictionless
    5·1 answer
  • Megan tries to open a door, but she is unable to push at a right angle to the door. So, she pushes the door at an angle of 55º f
    10·1 answer
  • What are the contrast of adaptation vs natural selection?
    7·1 answer
  • List four functions of the skeletal system.
    8·2 answers
  • There are several ways to model a compound. One type of model is shown. What is the chemical formula for the molecule modeled? О
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!